480 LOADER TABLE OF CONTENTS

SER	IES/SECTION	SECTION NO.	FORM NO.	
10	SERIES - GENERAL Engine Specifications	С	9-77001	
20	SERIES - ENGINES Cylinder Head and Valves Engine Block Assemblies	22 23	9-80472 9-80431	
		25	2 00431	
30	SERIES - FUEL SYSTEMS			
	Fuel Injectors	33	9-80411	
	Carburetor	35	9-80581	
	Fuel Injector Pumps	3022	9-80422	
	Adjusting the Throttle Linkage	1 Supp. 1 N Supp. 1	9-77531 9-77531	
40				
40	Couplings and Cylinders	46	0-78082	
	Servicing the Hydraulic Valves	ס ר ת	9-75521	
	Servicing the Hydraulic Dump	ם מח	9_77061	
	Servicing the Hydraulic System	R	9-77081	
			,	
50	SERIES - STEERING			
	Power Steering Pump and Hand Pump	52	9-80611	
	Steering Control Valve	53	9-80671	
	Steering Cylinder and Adjustments	54	9-80622	
	Steering Axle and Wheel Bearings	55	9-80632	
60	SERIES - POWER TRAIN			
	Transmission	65	9-80641	
	Mechanical Shuttle	66	9-80771	
	Dual Range Assembly	67	9-80781	
	Servicing the 11 Inch Traction Clutch	5S	9-77132	
	Servicing the Standard Power Take-Off	6S	9-77141	
	Servicing the Independent Power Take-Off	7S	9-77151	
70	SERIES - BRAKES			
	Differential	74	9-80691	
80	SERIES - ELECTRICAL			
	Wiring Diagrams		9-77171	
	Electrical Systems	F	9-77023	
90	SERIES - MOUNTED EQUIPMENT			
	Model "23" Loader and Backhoe		JBDBO	
	Model "26" Loader and Backhoe		9-99985	
100	SERIES - HOW IT WORKS - TROUBLESHOOTING			
	Hydrostatic Power Steering	151	9-80801	

Reprinted

diesel engine

C-2 **188 ENGINE SPECIFICATIONS**

Type ----- CASE Full Diesel,4 Cylinder 4 Stroke Cycle Valve-in-Head Engine.

No. of Cylinder Heads 1
Firing Order 1-3-4-2
Bore 3-13/16 Inches
Stroke 4-1/8 Inches
Piston Displacement 188 Cubic Inches
Compression Ratio 17.5 to 1
Oil Filter, Crankcase Replaceable Full Flow Element Type.
Method of Starting Diesel Engine Electric Starting Motor.

Maximum Compression Pressures ENGINE WARMED UP TO OPERATING TEMPERATURE CRANKING AT APPROXIMATELY 200RPM

Altitude	Sea Level	1000 ft.	2000 ft.	3000 ft.	4000 ft.	5000 ft.
Compression	400 PSI	389 PSI	373 PSI	359 PSI	346 PSI	332 PSI

Allowable Variance Between Cylinders ----- 20 Pounds

CYLINDER SLEEVES

Type ----- Replaceable Wet Type; Two Rubber "O" Ring Seals Carried on Each Sleeve.

Inside Diameter of Sleeve Bore ----- 3.8110 to 3.8120 Inches. Replace Sleeve When Inside Diameter Below Top Ring Ridge Exceeds 3.819 Inches.

Piston Clearance in Sleeve (At Skirt) -----.002 to .005 Inch

Cylinder Sleeve Protrusion Above Block -----. .002 to .005 Inch

PISTON AND PISTON PINS

Piston Material Aluminum
Piston Weight (Less Pin) 2.224 to 2.233 Pounds
Diameter of Piston at Top of Skirt (Below Oil Ring Perpendicular to Pin) 3.805 to 3.806 Pounds
Diameter of Piston at Bottom of Skirt (Perpendicular to Pin)3.807 to 3.808 Inches
Piston Pins Full Floating Type; Held in Position With Snap Rings in Piston. Replaceable Bronze Bushing in Connecting Rod.
Piston Pin Length 3.147 to 3.167 Inches
Piston Pin Diameter1.2497 to 1.2498 Inches
Piston Pin Fit in Piston0001 to .0004 Inch

Piston Pin Fit in Connecting Rod Bushing -----.0002 to .0005 Inch

PISTON RINGS

Rings Per Piston 3 (2 Compression and 1 Oil)
Compression Rings
Width of Ring-Top (Keystone)1225 to .124 Inch
2nd0930 to .0935 Inch
Ring End Gap When Compressed in 3.8125 Inch Cylinder015 to .025 Inch
Side Clearance in Groove of 2nd Ring0035 to .005 Inch
Oil Ring To Install Replacement Ring, Follow Instructions Packed With Rings.
Width of Ring1825 to .1885 Inch
Side Clearance in Groove0000 to .007 Inch

Connecting Rod Bushing ----- Replaceable Bronze Bushing. Replacement Bushing Must be Reamed. Use 1.2500 to 1.2502 Reamer.

Piston Pin Hole Diameter in Rod(Without Bushing)-1.312 to 1.313 Inches

- Inside Diameter of Piston Pin Bushing in Rod ----- 1.2500 to 1.2502 Inches; Install New Bushing If Inside Diameter Exceeds 1.2507 Inches.
- ----Replaceable Precision, Steel Backed Connecting Rod Bearing -----Aluminum Liners
- ---- Self Locking Type, No Lock Wires Connecting Rod Capscrews ---Required; May Be Used More Than Once.

Connecting Rod Length (Center to Center Between Pin Hole and Bearing Journal Hole) --- 7.0029 to 7.0039 Inches

- Bearing Liner Width ----- 1.125 Inches
- Diameter of Crankshaft Journal Hole in Rod (Without Liner) ----- 2.1870 to 2.1875 Inches

Inside Diameter of Bearing Liner (Standard Liner in Place in Rod and Capscrews Tight) ----2.0625 to 2.0640 Inches

- Diameter of Crankshaft Rod Journal -----2.0605 to 2.0615 Inches
- Clearance Between Rod Bearing and ---- .001 to .0035 Inch; Install Crankshaft Journal -----New Bearing Liners When Clearance Exceeds .006 Inch.

Undersize Bearing Liners Available for Service -----.002, .010, .020, .030 Inch

Allowable Connecting Rod Bearing End Play -----.005 to .011 Inch

CRANKSHAFT AND MAIN BEARINGS

Crankshaft ------ Balanced; Drilled to Provide Pressure Lubrication to Main and Connecting Rod Bearings.

- ----- Replaceable, Precision, Steel Type Main Bearings -Backed Aluminum Liners.
- ----- Self Locking Type; No Lock Bearing Capscrews ---Wires Required. May Be Used More Than Once

Bearing Taking End Thrust ----- Center

Crankshaft End Play (Measured at Center Main Bearing) -----. .001 to .006 Inch; Install New Bearing If End Play Exceeds .012 Inch.

Main Bearing Journal Diameter ----- 2.873 to 2.874 Inches

Crankshaft Main and Connecting Rod Journal Bearings out of Round ----- Maximum .002 Inch

Inside Diameter of Main Bearing Liners (In Place and Capscrews Tight)----- 3.8748 to 3.8768 Inches

Clearance Between Main _____.0008 to .0038 Inch; Install Bearing Liner and Journal ----New Bearing Liner When Clearance Exceeds .006 Inch.

Width of 1st Main Bearing Liner (Front) ----- 1.276 to 1.286 Inches

Width of 2nd and 4th Main Bearing Liners -----.980 to 1.000 Inches

Width of 3rd (Center) Main Bearing Liner -----1.371 to 1.373 Inches

Width of 5th (Rear) Main Bearing Liner -----1.5575 to 1.5675 Inches

Width Between Crankshaft Main Bearing Cheeks

2n

5th ----- 1.745 to 1.755 Inches

d. 4	th		1.185 to	5 1.189	Inches
------	----	--	----------	---------	--------

3rd (Center)----- 1.374 to 1.377 Inches

Width Between Crankshaft Rod Bearing Journal Cheeks -----1.3105 to 1.3145 Inches

Undersize Main Bearing Liners

.....

. .

Crankshaft Main Bearing Journals Should Be Ground to

Be Ground to

2.863 to 2.864 Inches for .010 Inch Undersize Bearing 2.853 to 2.854 Inches for .020 Inch Undersize Bearing 2.843 to 2.844 Inches for .030 Inch Undersize Bearing

Undersize Connecting Rod Bearing Shells Available for Service --------.002, .010, .020,. 030 Inch

Connecting Rod Crankshaft Journals Should

2.0505-2.0515 Inches for .010 Inch Undersize Bearing 2.0405-2.0415 Inches for .020 Inch Undersize Bearing 2.0305-2.0315 Inches for .030 Inch Undersize Bearing

CAMSHAFT AND BUSHINGS

Number of Bearing Surfaces on Camshaft -----5

Type Bushing ----- Replaceable, Precision, Steel Backed Babbitt

Diameter of Camshaft at Each Bearing Surface --- 1.749 to 1.750 Inches

Inside Diameter of Each Bushing (Measured When in Place in Block) -----1.752 to 1.753 Inches No. 1 (Front) Bushing Length ----- 1.213 to 1.223 Inches No. 2 and 4 Bushing Length ----- .490 to .500 Inch No. 3 Bushing Length -----. .713 to .723 Inch No. 5 Bushing Length ----- 1.213 to 1.223 Inches Camshaft End Play ----- Taken Up By Thrust Plate Camshaft Thrust Plate Thickness ------ .147 to .149 Inch

TIMING GEARS

Total Gear Train Backlash (From Crankshaft to Injection Pump Drive Gear)-Measured at Injection Pump Drive Gear --- Max. .030 Inch

Backlash Between Oil Pump Drive Gear and Crankshaft Gear -----.003 to .007 Inch

VALVE PUSH ROD LIFTERS

Type ----- Mushroom Type

Outside Diameter of End That Projects into Block ---- .561 to .562 Inch

Diameter of Bore in Block for Lifter ------ .5625 to .5635 Inch

VALVES

Valve Tappet Clearance

Intake and Exhaust -----.014 Inch, Engine Cold Hot Settings Are Made At Low Idle After The Engine Has Operated At Thermostat Control Temperature For At Least Fifteen Minutes.

Exhaust Valves

Angle	eof	Valve	Face		44	Degrees
-------	-----	-------	------	--	----	---------

Valve Length ----- 6.339 to 6.364 Inches

Maximum Valve Face Runout -----r002 Inch as Determined with a Dial Indicator

Diameter of Valve Stem --. 3399 to .3409 Inch Install New Valve If There is More Than .002 Inch Difference in Diameter At Any Point on Stem

Diameter of Valve Head -----1.403 Inches

Exhaust Valve Seat Insert

Seat Angle	45 Degrees
Seat Width	
Insert Height	.2475 to .2525 Inch
Outside Diameter of Insert	1.445 to 1.4505 Inches
Inside Diameter of Insert	1.245 to 1.255 Inches
Maximum Allowable Seat Runout with a Dial	Indicator

Exhaust Valve Guides

Length 3.125 Inches
Outside Diameter6565 to .6575 Inch
Inside Diameter3429 to .3439 (After Assembly)
Valve Stem Clearance in Guide002 to .004 Inch
Distance Above Head Guide Must Protrude875 Inch, Press Fit

Intake Valves

Angle of Valve Face	 44 Degrees
---------------------	--------------------------------

Valve	Length		6.334	to	6.369	Inch	let
-------	--------	--	-------	----	-------	------	-----

Maximum Valve Face Runout ----- .002 Inch as Determined with a Dial Indicator

Diameter of Valve Stem -----.3409 to .3419 Inch. Install New Valve if there is More Than .002 Inch Difference in Diameter at any Point on Stem.

Diameter of Valve Head ----- 1.604 Inches

Intake Valve Seat

Seat	Angle		45	Deg	rees
Seat	Width	082	to .	.094	Inch

-----.002 Inch Maximum Allowable Seat Runout -----As Determined With a Dial Indicator.

Intake Valve Guides

1

Length3.250 Inches
Outside Diameter6565 to .6575 Inch
Inside Diameter3429 to .3439 Inch (After Assembly)
Valve Stem Clearance in Guide001 to .003 Inch
Distance Above Head Guide Must Protrude875 Inch, Press Fit

VALVE SPRINGS

Free Length	Approximatel	y 2.3	375	Inches
-------------	--------------	-------	-----	--------

Spring Pressure at	Compressed Height of	
1.516 Inches (Valve	e Open)110-118 Pou	nds

Soring Pressure at Compressed Height of ----- 53-59 Pounds 1.875 Inches (Valve Closed) ------

ROCKER ARM ASSEMBLY

Rocker Arm Bushing Replaceable Precision Bronze Bushing
Number of Bushings8
Lubrication Engine Lubricated
Outside Diameter of Rocker Arm Shaft622 to .623 Inch
Inside Diameter of Rocker Arm Bushing (Installed)624 to .625 Inch
Rocker Arm Shaft Spring Pressure at Compressed Height of 1.750 Inches

OIL PUMP

- Positive Displacement, Gear Type Pump; Type -----Driven Off Crankshaft

----- Maintains 50 to 75 Pounds Full Pressure Relief Valve ----Pressure (Oil Warm, Engine Operating at Full Governed Speed).

Relief Valve Spring Pressure At Compressed Height of ----- 18.4 Pounds 1.438 Inches -----

Radial Clearance of Gears (Clearance Between Gears and Housing) ----- .002 to .005 Inch

Gear End Clearance (Clearance Between Gears and Cover) -----.0015 to .0055 Inch

C-3

C-4 WATER PUMP AND THERMOSTAT

Type of System ------ Pressurized Thermostat Controlled Forced Circulation (Pump).

Type Pump ----- Impeller Vane Type

Temperature Control -----Butterfly Type Thermostat

FUEL SYSTEM

Injection Pump ----- Roosa Master, Model DB. Single Cylinder, Opposed Plunger, Inlet Metering. Distributor Type.

Direction of Pump Rotation ----- Counter-Clockwise (as Viewed from Drive End).

Pump Mounting ----- Left Side of Engine

Pump Drive ------Gear Driven from Pump Drive Idler Gear

Injection Pump Idler Gear End Clearance -----.003 Inch

Injection Pump Drive Lubrication ----- Crankcase Oil Through Timing Gear Train.

Injection Pump Drive

- Shaft End Play ------ Automatically Taken Up By a Spring Loaded Thrust Button in Front End of Pump Drive Shaft.
- Timing Marks on Engine Flywheel -----40° BTDC to 10° ATDC in One Degree Increments

Fuel Injection -----C. A. V. Long Stem Multi-Hole Type Opening Pressure 2250 PSI.

Fuel Transfer Pump ------ Vane Type; Integral Part of Injection Pump

Governor ----- Mechanical, Fly-Weight Integral Part of Injection Pump

Fuel Filters

Fuel Tank Air Breather ----- Vented Tank Filler Cap

Fuel Tank Water Trap ----- Located in Base of Fuel Tank

1st Stage Fuel Filter ----- Replaceable Element Type

2nd Stage Fuel Filter ------Replaceable Sealed "Can" Type

spark ignition engine.

148 ENGINE SPECIFICATIONS

Type CASE 4 Cylinder, 4 Stroke Cycle, Valve in Head Engine.					
No. of Cylinder Heads1					
Firing Order1-3-4-2					
Bore 3-3/8 Inches					
Stroke4 Inches					
Piston Displacement 148 Cubic Inches					
Compression Ratio7.1 to 1					
Maximum Compression at Cranking Speed 200 RPM Engine Warmed Up to Operating Temperature 115 PSI at Sea Level					
Allowable Variance Between Cylinders 20 Pounds Pressure					
Oil Filter, Crankcase Replaceable Cartridge Type					
Exhaust Valve Rotators Positive Type					
Ignition Distributor					
CYLINDER SLEEVES					
CYLINDER SLEEVES					
CYLINDER SLEEVES Type Replaceable Wet Type; Two Rubber "O" Ring Seals Carried on Each Sleeve.					
CYLINDER SLEEVES Type Replaceable Wet Type; Two Rubber "O" Ring Seals Carried on Each Sleeve. Inside Diameter of Sleeve Bore 3.3750 to 3.3765 Inches. Replace Sleeve When Inside Diameter Below Top Ring Ridge Exceeds 3.384 Inches.					
CYLINDER SLEEVES Type					
CYLINDER SLEEVES TypeReplaceable Wet Type; Two Rubber "O" Ring Seals Carried on Each Sleeve. Inside Diameter of Sleeve Bore 3.3750 to 3.3765 Inches. Replace Sleeve When Inside Diameter Below Top Ring Ridge Exceeds 3.384 Inches. Piston Clearance in Sleeve (At Skirt)001 to .002 Inch Cylinder Sleeve Protrusion Above Block002 to .005 Inch					
CYLINDER SLEEVES TypeReplaceable Wet Type; Two Rubber "O" Ring Seals Carried on Each Sleeve. Inside Diameter of Sleeve Bore 3.3750 to 3.3765 Inches. Replace Sleeve When Inside Diameter Below Top Ring Ridge Exceeds 3.384 Inches. Piston Clearance in Sleeve (At Skirt)001 to .002 Inch Cylinder Sleeve Protrusion Above Block002 to .005 Inch PISTON AND PISTON PINS					
CYLINDER SLEEVES TypeReplaceable Wet Type; Two Rubber "O" Ring Seals Carried on Each Sleeve. Inside Diameter of Sleeve Bore 3.3750 to 3.3765 Inches. Replace Sleeve When Inside Diameter Below Top Ring Ridge Exceeds 3.384 Inches. Piston Clearance in Sleeve (At Skirt)001 to .002 Inch Cylinder Sleeve Protrusion Above Block002 to .005 Inch PISTON AND PISTON PINS Piston Material					
CYLINDER SLEEVES TypeReplaceable Wet Type; Two Rubber "O" Ring Seals Carried on Each Sleeve. Inside Diameter of Sleeve Bore 3.3750 to 3.3765 Inches. Replace Sleeve When Inside Diameter Below Top Ring Ridge Exceeds 3.384 Inches. Piston Clearance in Sleeve (At Skirt)					

Rings in Piston; Replaceable Bronze Bushing in Connecting Rod. Piston Pin Length ----- 2.750 to 2.740 Inches Piston Pin Diameter -----.8592 to .8593 Inch Piston Pin Fit in Piston -----.0000 to .0003 Inch

Piston Pin Fit in Connecting Rod Bushing -----.0002 to .0006 Inch

PISTON RINGS

Rings Per Piston ------ 4-(3 Compression and 1 Oil)

Compression Rings (Top 3)

Width of Rings (All 3) ----- .0930 to .0935 Inch

Ring End Gap (All 3) When Compressed in 3.375 Inch Cylinder -----. .010 to .020 Inch

Side Clearance in Groove of 1st (Top) Ring -----.003 to .0045 Inch

Side Clearance in Groove of 2nd and 3rd Rings ---.0025 to .004 Inch

Oil Ring ------ To install Replacement Ring, Follow Instructions Packed with Rings.

Width of Ring ------ .2485 to .2490 Inch

Ring End Gap When Compressed in 3.375 Inch Cylinder -----.010 to .020 Inch

Side Clearance in Groove ----- .001 to .0025 Inch

CONNECTING RODS

Piston Pin Bushing ----- Replaceable Bronze Bushing Ream in Place. Use .8596 to .8598 Reamer

Piston Pin Hole Diameter in Rod (Without Bushing) ------ .9045 to .9055 Inch

C-5
Inside Diameter of Piston Pin Bushing in Rod8596 to .8598 Inch; Install New Bushing if Inside Diameter Exceeds .863 Inch
Connecting Rod Bearing Replaceable, Precision Steel Backed, Aluminum Liners.
Connecting Rod CapscrewsSelf Locking Type, No Lock Wire Required - May Be Used More Than Once
Connecting Rod Length (Center to Center Between Pin Hole and Bearing Journal Hole) 6.998 to 7.002 Inches
Bearing Liner Width1.120 to 1.130 Inches
Diameter of Crankshaft Journal Hole in Rod (Without Liner)2.1870 to 2.1875 Inches
Inside Diameter of Bearing Liner (Standard Liner in Place in Rod and Capscrews Tight)2.0620 to 2.0630 Inches
Diameter of Crankshaft Rod Journal2.0605 to 2.0615 Inches
Clearance Between Rod Bearing and Crankshaft Journal,0005 to .0025 Inch; Install New Bearing Liners When Clearance Exceeds .006 Inch
Undersize Bearing Liners Available for Service002, .010, .020, .030 Inch
Allowable Connecting Rod Bearing End Play005 to .011 Inch
CRANKSHAFT AND MAIN BEARINGS
Crankshaft Balanced; Drilled to Provide Pressure Lubrication to Main and Connecting Rod Bearings
Type Main BearingsReplaceable, Precision, Steel Backed, Copper Lead Liners.
Bearing CapscrewsSelf Locking Type, No Lock Wires Required - May Be Used More Than Once
Bearing Taking End Thrust Center
Crankshaft End Play (Measured at Center Main Bearing)
Connecting Rod Journal Diameter 2.0605 to 2.0615 Inches
Main Bearing Journal Diameter2.623 to 2.624 Inches
Crankshaft Main and Connecting Rod Journal Bearing Out-of-Round002 Inch
Inside Diameter of Main Bearing Liners (In Place and Capscrews Tight) 2.6245 to 2.626 Inches
Clearance Between Main Bearing Liner and Journal005 to .003 Inch; Install New Bearing Liners When Clearance Exceeds .003 Inch
Width of 1st Main Bearing Liner1.437 Inches
Width of 2nd Main Bearing Liner 1.500 Inches
Width of 3rd Main Bearing Liner 1.562 Inches
Width Between Crankshaft Center Main Bearing Cheeks 1.499 to 1.502 Inches
Width Between Crankshaft Rod Bearing Journal Cheeks1.3105 to 1.3145 Inches
Undersize Main Bearing Liners Available for Service
Crankshaft Main Bearing Journals Should be ground to2.603 to 2.604 Inches for .020 Inch Undersize Bearing 2.583 to 2.584 Inches for .040 Inch Undersize Bearing
Undersize Connecting Rod Bearing Shells Available for Service002, .010, .020, .030 Inch

Connecting Rod Crankshaft Journals Should

be ground to ---2.0505 to 2.0515 Inches for .010 Inch Undersize Bearing 2.0405 to 2.0415 Inches for .020 Inch Undersize Bearing 2.0305 to 2.0315 Inches for .030 Inch Undersize Bearing

C-6 CAMSHAFT AND BUSHINGS

Number of Bearing Surfaces on Camshaft3
Type Bushing Replaceable, Precision, Steel Backed Babbitt
Diameter of Camshaft at Each Bearing Surface 1.749 to 1.750 Inches
Inside Diameter of Each Bushing (Measured When in Place in Block)1.752 to 1.753 Inches

No. 1 (Front) Bushing Length ------ 1.307 to 1.317 Inches

No. 2 (Center) Bushing Length -----.713 to .723 Inch

No. 3 (Rear) Bushing Length -----1.177 to 1.197 Inches

Camshaft End Play -----. .003 to .007 Inch

Camshaft Thrust Plate Thickness ------ .147 to .149 Inch

TIMING GEARS

Backlash Between Oil Pump Drive Gear and Crankshaft Gear -----.005 to .010 Inch

Backlash Between Crankshaft and Camshaft Gear ----.003 to .007 Inch

VALVE PUSH ROD LIFTERS

Type ----- Mushroom Type

Outside Diameter of End That Projects into Block -----.5615 to .5620 Inch

Diameter of Bore in Block for Lifter -----. .5625 to .5635 Inch

VALVES

Valve Tappet Clearance

Exhaust Valves

Angle	of	Valve	Face	44	Degrees

Valve Length	- 5.166	to 5	5.191	Inches
--------------	---------	------	-------	--------

Maximum Valve Face Runout ------002 Inch as Determined with a Dial Indicator

Diameter of Valve Stem ------ .3382 to .3390 Inch; Install New Valve if There is More Than .002 Inch Difference in Diameter at any Point on Stem.

Diameter of Valve Head -----1.198 to 1.1208 Inches

Valve Rotators ----- Positive Type

Exhaust Valve Seat

Seat	Angle	 45	Degrees

- Seat Width -----.090 to .100 Inch
- Maximum Allowable Seat Runout ------ .002 Inch as Determined With a Dial Indicator

Intake Valves

Angle	of	Valve	Face	29	Degrees

- Valve Length ----- 5.166 to 5.191 Inches
- Maximum Valve Face Runout -----.002 Inch as Determined with a Dial Indicator.
- Diameter of Valve Stem ------3406 to .3414 Inch. Install a New Valve If There is More Than .002 Inch Difference in Diameter at any Point or Stem.
- Diameter of Valve Head -----1.323 to 1.333 Inches

Intake Valve Seat

es

Seat Width045	to	.060	Inch

Exhaust Valve Guides

T an other

Deugen	2.000 liches
Outside Diameter	6565 to .6575 Inch

9 600 Tashar

Valve Stem Clearance in Guide ----- .0032 to .005 Inch

Distance Above Head Guide Must Protrude -----.968 Inch. Press Fit

Intake Valve Guides

Length	***************************************	2.6	58	8	Inc	hes
--------	---	-----	----	---	-----	-----

Outside Diameter ----- .6565 to .6575 Inch

Valve Stem Clearance in Guide -----.0008 to .0026 Inch

Distance Above Head Guide Must Protrude -----1.031 Inch, Press Fit

VALVE SPRINGS

Intake

Free Length ----- Approx. 2.375 Inches

Spring Pressure at Compressed Height of 1.521 (Valve Open) ------110 to 118 Pounds; Install New Spring if Pressure is Less Than 102 Pounds.

Spring Pressure at Compressed Height of 1.875 Inches (Valve Closed) ----- 53 to 59 Pounds: Install New Spring if Pressure is Less Than 50 Pounds.

Exhaust

Free Length ----- Approx. 2.188 Inches

Spring Pressure at Compressed Height of 1.332 Inches (Valve Open) ----- 110 to 118 Pounds; Install New Spring if Pressure is Less Than 102 Pounds.

Spring Pressure at Compressed Height of 1.688 Inches (Valve Closed) -----53 to 59 Pounds; Install New Spring if Pressure is Less Than 50 Pounds.

ROCKER ARM ASSEMBLY

Rocker Arm Bushings ------Replaceable Precision Bronze Bushing

Number of Bushings -----8

Lubrication ----- Pressure Lubricated; Crankcase Oil To Rocker Arms Full Pressure

Oil Holes in Rocker Arm Shaft -----Oil Holes Must Face Downward, Shaft Cannot Be Rotated

Positioning of Exhaust Valve

- Rocker Arms ------Spacer Washers Position Exhaust Valve Rocker Arm and Eliminates End Play Without Binding.
- Outside Diameter of Rocker Arm Shaft -----.622 to .623 Inch

Rocker Arm Shaft Spring Pressure at Compressed Height of .687 Inch ------- 8 Pounds; Install New Spring if Pressure is less than 7.500 Pounds.

OIL PUMP

Type ----- Positive Displacement, Gear Type Pump Driven Off Crankshaft.

Fressure Relief Valve ------ Maintains 28 to 32 Pounds Oil Pressure (Oil Warm, Engine Operating at Full Governed Speed).

Relief Valve Spring Pressure at Compressed Height of 1.438 Inches ------ 18.4 Pounds

Radial Clearance of Gears (Clearance Between Gears and Housing) -----. .002 to .005 Inch

Gear End Clearance

(Clearance Between Gears and Cover) ----- .0015 to .0055 Inch

WATER PUMP AND THERMOSTAT

Type of System Thermostat Controlled, Forced Circulation (Pump).
Type Pump Impeller Vane Type
RadiatorHeavy Duty Fin and Tube Type
Temperature Control By-Pass Type Thermostat
FUEL SYSTEM
Type of System

Type of System	Gravity Flow
Carburetor	Marvel Schebler TSX635
Float Level	Nearest Surface of Float.
Load Jet	Adjustable
Venturi Size	
Flore	

SPECIAL TORQUE SPECIFICATIONS

For Torques Not Listed Below Use Torque Chart on Following Page

	Camshaft Nut80-90 Ft. Lbs.	
	Connecting Rod Nut45-50 Ft. Lbs.	
	Connector Bolts (High Pressure Line to Injection Pump)-33-36 Ft. Lbs.	
	Crankshaft Nut 125-135 Ft. Lbs.	
	Cylinder Head Capscrew(In Water Pump Housing)-Maximum 30 Ft. Lbs.	
	Cylinder Head Nuts (Gasoline)95-105 Ft. Lbs.	
	Cylinder Head Nuts (Diesel)110-120 Ft. Lbs.	
	Engine to Torque Tube150-160 Ft. Lbs.	
	Engine to Front Support120-135 Ft. Lbs.	
	Flywheel Capscrews65-70 Ft. Lbs.	
	Governor Control Rod to Engine Block15 Ft. Lbs.	
	Heat Plug 25-30 Ft. Lbs.	
	High Pressure Fuel Line Nuts to Injector15 to 20 Ft. Lbs.	
	Injection Nozzle Cap Nut50 Ft. Lbs.	
	Injector Stud Nuts (To Cylinder Head)12-15 Ft. Lbs. (To Avoid Distorting Nozzle Holder the Two Nuts must Be Tightened Simultaneously)	
	Injector Spring Cap Nut75 Ft. Lbs.	
	Injector Pump Drive Shaft35-40 Ft. Lbs.	
	Main Bearing Place Bolts90-100 Ft. Lbs.	
	Manifold Stud Nuts25-30 Ft. Lbs.	
	Oil Pan Capscrews10-12 Ft. Lbs.	
	Oil Seal Retainer Capscrews6-8 Ft. Lbs.	
	Oil Pump Cover Capscrews6-8 Ft. Lbs.	
	Push Rod Adjustable ScrewMinimum 30 In. Lbs.	
	Screen Assembly at Injection Pump Inlet12 Ft. Lbs.	
	Spark Plugs 32-35 Ft. Lbs.	
	Timing Window Cover Screw on Injection Pump1-2 Ft. Lbs.	
	Valve Cover Stud Nuts5-6 Ft. Lbs.	
,	Water Pump Stud Nuts20-25 Ft. Lbs.	

.

-

GENERAL TORQUE SPECIFICATION TABLE (Revised 5-64) USE THE FOLLOWING TORQUES WHEN SPECIAL TORQUES ARE NOT GIVEN NOTE: These values apply to fasteners as received from supplier, dry, or when lubricated with normal engine oil. They do not apply if special graphited or moly-disulphide greases or other extreme pressure lubricants are					
used. This a	pplies to both UN	IF and UNC thr	eads.		
SAE Grade No.		5		8 *	
Bolt head identification marks as per grade Note: Manufacturing	$\langle \rangle \langle$	$\supset \bigotimes$	\bigcirc		
Marks Will Vary	Torque Fo	oot Pounds	Torque	Foot Pounds	
Bolt Size	Min.	Max.	Min.	Max.	
1/4″	9	11	12	15	
5/16	15	18	24	28	
3/8	35	40	45	50	
7/16	54	60	70	80	
1/2	80	90	110	125	
9/16	110	120	160	180	
5/8	150	165	220	240	
3/4	260	280	380	420	
7/8	360	400	600	660	
״ן	540	600	900	1000	
1-1/8	720	800	1280	1440	
1-1/4	1000	1100	1800	2000	
1-3/8	1460	1680	2380	2720	
1-1/2	1940	2200	3160	35 60	
* Thick nuts must be use	d with Grade 8 l	bolts			

TIMING CHART

ENGINE	FULL LOAD GOVERNED ENGINE SPEED	NUMBER OF DEGREES
188D (480)	1750	8°BTDC
148G (480)	1750	4º BTDC (Static) 25º BTDC (Running at Full Load RPM)

VALVE TIMING

With valve clearances set correctly, dial indicator mounted above valve stem reading taken with valve .040" off its seat.

188D Inlet Valve (No. 1 Cyl.) ----- 3° 30' ATC

148G Exhaust Closing (No.1 Cyl. -----10° BTC

NOTE "Inlet opening" and "Exhaust closing" are the only positions on these engines that can be checked by the flywheel timing marks. Use the degree marks already on the flywheel for measurement. If this position is correct, it can be assumed that the timing gears are correctly marked and properly assembled.

Section

CYLINDER HEAD AND VALVES 188 DIESEL ENGINES

SPECIFICATIONS

	Maximum Limit
CYLINDER HEAD	Including Wear
Warpage	
EXHAUST VALVES	
Tappet Clearance (Hot and Cold)	.014″
Face Angle	440
Face Run-Out	
O.D. of Head	408″
O.D. of Stem	3409″
Length	.364″
Insert Seat Angle	450
Seat Face Width	0415"
Seat Run-Out	
Insert Height	2525″
O.D. of Insert 1.4450" to 1.4	4505″
I.D. of Insert 1.245" to 1	.255″
INTAKE VALVES	
Tappet Clearance (Hot and Cold)	014″
Face Angle	440
Face Run-Out	
O.D. of Head 1 599" to 1	609″
O.D. of Stem	
Length	364"
Seat Angle	450
Seat Run-Out	
Seat Width	.094″

Rac. 9-80472

PRINTED IN U.S.A.

SPECIFICATIONS (Continued)

	Including Woon
EXHAUST VALVE GUIDES	Including wear
Length	.125"
O.D)575″
I.D. (Installed and Reamed)	\$439"
Valve Stem Clearance in Guide	.004″
Protrusion Above Cylinder Head	.875″
INTAKE VALVE GUIDES	
Length	250″
0.D	575″
I.D. (Installed and Reamed) 3429" to 3	439″ 001″
Valve Stem Clearance in Cuide	003"
Protruction Above Cylinder Head	000 075″
Fiotrusion Above Cynnaer neau	013
VALVE SPRING	
Free Length	.375″
Total Coils	8.25
Wire Diameter	162″
I.D	978″
Compressed to 1.521" (Valve Open) 110 to 118	lbs
Compressed to 1.875" (Valve Closed)	lbs
	105.
ROCKER ARM ASSEMBLY	
O.D. of Shaft	.623″
I.D. of Arm Bore	.625″
Shaft Spring	
Free Length	2.5″
Wire Diameter	072″
Compressed to $1.75''$ 7.5 to 8.5	lbe
Lubrication Engine oil complete mate	ring
Sheft Oil Heles	ning vino
Shalt On Holes Toward valve side of eng	sme,
shaft cannot be rota	itea.

SPECIAL TORQUES

Cylinder Head Studs w/Flange Nuts	90 to	100	ft.	lbs.
Intake and Exhaust Manifold Stud Nuts	25 t	o 30	ft.	lbs.
Cylinder Head Valve Cover Stud Nuts	5	to 8	ft.	lbs.
Rocker Arm Bracket Bolts	25 te	o 30	ft.	lbs.

CHECKING COMPRESSION PRESSURE

- 1. Clean the engine thoroughly, preferably by steam cleaning.
- 2. Before cranking the engine make sure all operating controls are in neutral, brakes are set and the wheels are securely blocked.
- 3. There are two methods of checking compression pressure - the cranking method

and the engine running method. NOTE: The engine must be at operating temperature for either method used.

A.CRANKING METHOD - Close the needle valve at the fuel tank. Disconnect all high pressure fuel lines and leak-off lines between injectors. Remove all of the injectors. Refer to the chart on Page 3.

Maximum Limit

CHECKING COMPRESSION PRESSURE (Continued)

- B.RUNNING METHOD Disconnect the high pressure fuel line and leak-off line from number one injector. Using an appropriate length of tubing or hose, route the fuel from these lines back to the fuel tank or a clean container. Refer to chart below.
- 4. Clean the injector bores of loose carbon and residue. Replace the compression seal in the injector bore of the cylinder to be checked and install a Bacharach 70-314 (D-558). Compression Gauge Adapter, Figure 1. Secure with an original injector clamp assembly and spacer, Figure 1, Inset A. Tighten bolt to 20 ft. lbs. Connect Case No. CD-504 Compression Gauge to the adapter, Figure 2.

IMPORTANT: It is very important that all cylinder pressure be approximately alike. For the allowable compression pressure variation refer to chart below.

Figure 1

5. If the compression is greater than the figure mentioned, carbon deposits are indicated. If the reading is below these figures, leaking valves or excessive ring clearance is indicated. **NOTE:** To make a simple check when a compression leak is indicated, squirt a small amount (a teaspoon) of oil into the cylinder and recheck the compression. If the pressure rises to near normal, compression loss is past the rings. Very little change in compression indicates leakage past the valves. A low pressure reading will cause difficulty in starting particularly at low temperatures.

NOTE: Take several compression reading on each cylinder. This is done by pressing the vent valve button, Figure 2, to relieve gauge pressure. When the button is released the gauge will again indicate compression pressure.

IMPORTANT: Replace the compression seal on all injectors at the time of installation, Figure 3.

Figure 3

	ENGINE SPEED	NORMAL COMPRESSION PRESSURE	ALLOWABLE VARIATION BETWEEN CYLINDERS
CRANKING	Approximately 200 RPM	400 PSI*	25 PSI
RUNNING	800 RPM	480 PSI*	20 PSI

NOTE: *A 4% reduction in PSI must be allowed for every 1000 ft. above sea level.

CYLINDER HEAD AND COMPONENTS

(Refer to Figure 4)

Disassembly

Remove the muffler and hood from vehicle. Disconnect the exhaust system and air cleaner from the manifolds. Loosen the alternator adjusting bolt and remove the fan belt. Remove the water pump and all stud nuts securing water manifold to cylinder head. Steam clean the entire area where service work is to be performed.

- 1. Drain the cooling system. **CAUTION:** If the engine is hot, do not remove the radiator cap until the coolant has had sufficient time to cool. Loosen the cap to the first stop carefully to relieve any excess pressure before removing it completely. Remove the upper radiator and water pump hoses.
- 2. Disconnect the high pressure fuel lines from the injectors and the leak-off tubes. Cap them to prevent any foreign particles from entering. Remove the injectors as described in Section 33 of the Service Manual.
- 3. Remove the breather tube (1).
- 4. Remove the intake elbow (2) and gasket (3), and discard the gasket.

- 5. Remove the intake manifold (4) and discard the gaskets (5).
- 6. Remove the exhaust stack (6) and gasket (7).
- 7. Remove the exhaust manifold (8) and discard the gaskets (9).
- 8. Remove the valve cover (10) and cover gasket (11). Discard gasket.
- 9. Remove the bolts and washers (12), and the rocker arm assembly (13). Remove the push rods (14) and tag them for proper reassembly.
- 10. Remove the flanged nuts (15). Remove the cylinder head assembly (16), fire rings (17) and head gasket (18). Discard the fire rings and head gasket.
 - **NOTE:** Refer to Inspection and Servicing on Page 6 and 7 prior to assembly.

Assembly

- 1. Place new cylinder head gasket (18) on the engine block. **NOTE:** Be sure the two dowel rings are installed in their proper location, Inset A.
- 2. Install the new fire rings (17) with either side up. **NOTE:** The fire rings must be installed dry.
- 3. Install new gasket (19) between timing cover and cylinder head, coating it with a sealer.
- 4. Install the cylinder head (16) and flanged nuts (15). Lubricate threads with clean engine oil prior to torquing. Torque the flange nuts to 60 ft. lbs. and then to 90-100 ft. lbs. using the torquing sequence shown in Inset B.
- 5. Install the water pump and a new gasket, coating the gasket with a sealer. Torque the water pump stud nuts 20-25 ft. lbs. Install the fan belt and adjust.
- 6. Coat the push rods (14) with clean engine oil and install them in their original location.
- 7. Install the rocker arm assembly (13). **NOTE:** The rear mounting bolt is drilled for oil passage to the rocker arm shafts. Torque the bolts (12) to 25-30 ft. lbs. Adjust the valve tappet clearance, refer to Page 16.

- 8. Install the intake (4) and exhaust (8) manifolds using new gaskets (5 & 9). Torque the stud nuts and bolts 25-30 ft. lbs.
- 9. Install the intake elbow (2) using new gasket (2). Install the exhaust stack (6) using new gasket (7).
- 10. Reinstall the air cleaner system and exhaust system. Refill the cooling system. Reconnect the high pressure fuel lines to the injectors and the leak-off tubes.
- 11. Apply clean engine oil to the rocker arm assembly and start the engine. Check that the rocker arms are receiving lubricating oil. Operate the engine for approximately one hour, (under load if possible) to thoroughly warm up the engine seat the head gaskets.
- 12. Shut the engine off. Back off each cylinder head flanged nut individually 1/4 and retorque to 100 ft. lbs. **NOTE:** DO NOT BACK OFF ALL THE FLANGED NUTS AT THE SAME TIME.
- 13. Install new valve cover gasket (11) and valve cover (10). Torque the valve cover stud nuts 5-8 ft. lbs. Install breather tube (1).

22-5

CYLINDER HEAD AND COMPONENTS (Continued)

Inspection

Replace all gaskets, seals and worn or defective parts.

- 1. Clean the top surface of the block and sleeve flange carefully. All traces of carbon and other deposits must be removed. During cleaning, the use of a rag dampened in solvent is recommended.
- 2. Using extreme care not to scratch surfaces. Remove any small burrs in the areas to be measured so accurate readings can be obtained.
- 3. Sleeve protrusion must be checked to determine which fire ring is used, Figure 5. Make sure the correct fire ring is used. **NOTE:** Only the standard size fire ring is included in the valve grind gasket kit. However, a thicker fire ring is available if the protrusion chart indicates a need for it. The thicker fire ring can be identified by a black marking stripe. Either a magnetic base dial indicator or a depth micrometer can be used to determine the cylinder sleeve protrusion as indicated in Figure 6. Measure cylinder sleeve protrusion at points A,B,C and D. Using ball (A28312), clamping bar

(A40682) and plate (OTC 970-7), clamp the cylinder sleeve in place, Figure 7. **NOTE:** The plate OTC 970-7 is available through local Owatonna Tool dealers or the Owatonna Tool Co., Owatonna, Minnesota. Torque the hold down capscrews to 50 ft. lbs.

- 4. Clean and inspect the cylinder head thoroughly. If evidence of fretting or erosion exists in the area of fire-ring contact or if the head is warped more than .006", the head must be resurfaced or replaced.
- 5. Inspect push rods for straightness, cracked or worn ends. Replace if necessary.
- 6. Clean all bolt and stud threads.
- 7. Clean the rocker arm cover and discard the old gasket.
- 8. Replace all hoses if cracks and deterioration is found. Replace hose clamps to assure a tight connection.

CYLINDER SLEEVE PROTRUSION	USE STANDARD FIRE RINGS	USE OVERSIZE (THICKNESS) FIRE RINGS
MORE THAN .003"*	X	
.001"003"*	X	
LESS THAN .001"*		X

*If sleeve protrusion varies more than .003" around circumference, change that sleeve and check again. If sleeve shows severe erosion, replace the sleeve. **NOTE:** Cylinder head warpage should not exceed .006" (maximum) measuring from end to end.

Figure 6

Figure 7

.

ROCKER ARM ASSEMBLY

(Refer to Figure 8)

Disassembly

- 1. Remove the rocker arm shaft bracket bolts (1 & 9). **NOTE:** The rear bracket bolt is drilled for oil passage to the rocker arm shafts.
- 2. Remove and tag each rocker arm (4 & 7) and bracket (3, 10, 11 & 12) for proper location

when assembling.

- 3. Remove the shaft springs (6) and tag the front and rear shafts (8).
- 4. Remove each tappet adjusting screw (5) from each rocker arm, refer to Inset A.

Inspection

Check the shaft springs for damage and proper tension.

SPRING SPECIFICATIONS

 Free Length
 2.5"

 Wire Diameter
 .072"

 Compressed to 1.75"
 7.5 to 8.5 lbs.

Flush the shafts to remove any residual material. Inspect the shafts for excessive wear or worn spots on the bottom side of the shafts.

Inspect the rocker arm shaft passages for wear. The maximum clearance between the

shaft and rocker arm is .010". Replace the shaft and rocker arms when wear is beyond this point.

Clean the oil passage in the rocker arms to insure free oil flow. Inspect the valve stem contact area on the rocker arm for wear. Replace if worn.

Clean and check the oil passages in the tappet adjusting screws and the rear bracket bolt.

Inspect the push rods for straightness, cracked or worn ends, replace if these conditions exist.

Assembly

With all component parts cleaned thoroughly and worn parts replaced, coat them with clean engine oil.

- 1. Install the intermediate brackets (10) on the shafts (8), starting with the front shaft. The front shaft is installed with the short end of the shaft (from the cut-out) toward the front of the engine, see Inset B. The rear shaft is installed with the short end of the shaft (from the cut-out) toward the rear of the engine.
- 2. Insert the bracket bolt (9) into the intermediate bracket (10) - it must line up with the cut-out in the shaft.
- 3. Install the tappet adjusting screws (5) into the rocker arms (4&7), make sure the screws are turned into the rocker arms as far as possible.
- 4. Install the rocker arms (4 & 7) and springs

(6) on the rocker arm shafts (8).

- 5. Install the center bracket (11) to the long end (from the cut-out) of the shafts (8). Install the front (12) and rear (3) brackets to the shafts (8).
- 6. Before installing the rocker arm assembly on the cylinder head, crank the engine (fuel injectors removed) with the starting motor (approximately 1 to 3 minutes) until oil appears at the rear oil passage in the head, see Inset C. Install the rocker arm assembly to the cylinder with bracket bolts (1 & 9), making sure the rear bracket drilled bolt (1) is installed the cylinder head oil passage hole.
- 7. Adjust the tappets, refer to Page 16.

Figure 8

CYLINDER HEAD ASSEMBLY

(Refer to Figure 9)

Disassembly

- 1. Using a valve spring compressor, compress the spring (1) enough to remove the valve retainer locks (2). Release the spring compressor and remove the valve spring retainer (3). Remove the valve spring (1), valve stem oil seals (4) and valve spring seats (5). Remove any carbon from the valve stems before they are removed from the cylinder head.
- 2. Remove the intake valves (6) and the exhaust valves (7) from the cylinder head (13) and set them in a rack or holder. **NOTE:** Mark them on removal so they may be installed in their original location.

- 3. Drive the intake valve guide (8) and exhaust valve guide (9) down through the head using an arbor.
- 4. The exhaust valve seats (10) can be removed with a special seat removing tool, Inset B. NOTE: Never attempt to remove a valve seat with a center punch, cold chisel or pry bar.
- 5. To remove the cup plugs (11) or expansion plug (12) they must be drilled and pryed out.

NOTE: Refer to Inspection and Servicing on Pages 12,13,14 and 15 prior to assembly.

Assembly

- 1. If the valve guides have been replaced, install the new guides (8 & 9) using an arbor. Press the guides into the head from the top of the cylinder head. The guides must protrude above the cylinder head (intake and exhaust) .875", Inset A.
- 2. To install new exhaust valve seats (10) clean the recess in the cylinder head. Place the valve seats in dry ice to shrink them. Insert the valve seats in the head and press them in place, using a suitable press.
- 3. Lubricate the intake valves (6) and exhaust valves (7) with clean engine oil and install

them in their original locations.

- 4. Install the valve spring seats (5), valve springs (1), the valve retainers (3). Compress the valve springs so the valve stem seals (4) can be installed in the lower grooves of the valve stems. Install the valve retainer locks (2). Remove the spring compressor carefully.
- 5. Install new plugs (11 & 12) if they were removed. **NOTE:** The cup plug (11) lip must be flush with the top of the cylinder head. The expansion plug (12) must be firmly seated against the ridge in the cylinder head.

INSPECTION OF VALVES, GUIDE3, HEAD AND SPRINGS

Clean the cylinder head completely. Remove all traces of carbon and other deposits. Check for cracks and any evidence of fretting or erosion existing in the area of fire ring contact. Check the head for evidence of warpage. If warpage exists and is more than .006", the cylinder head must be resurfaced or replaced.

Valve springs should be checked for flat squared ends, broken coils and correct spring pressure. Use a Valve Spring Tester referring to the spring specifications below:

Free Length	2.375''
Total Coils	· 8.25″
Wire Diameter	.162″

Valve	Compressed	Spring	Replace if
Position	Height	Pressure	Less than
Valve Open	1.521''	114 lbs.	110 lbs.
Valve Closed	1.875″	56 lbs.	53 lbs.

Remove all carbon from the bore of the valve guides with a fine wire brush and blow clean with compressed air. Valve guides can be checked for wear by using a bore gauge and micrometer, refer to Figure 10, Inset A. The valve guides should be checked at the top, middle and bottom of the guide bore for wear, Figure 10. If the diameter is greater than .3440" at any point along the bore, the guide must be replaced. Use an arbor equal to the inside diameter of the valve guide to keep the guide from collapsing when pressed into place. Press in from the top of the head until the guide (Intake and Exhaust) protrudes a distance of .875" above the head, refer to Figure 9, Inset A, Page 11. Replacement guides must be reamed after installation. Ream the guide .3429" to .3439" diameter.

Clean the valves with a power driven fine wire brush, being very careful not to scratch the valve stems. Refer to Figure 11 for valve nomenclature.

Inspect the valves for excessive wear or necked stems, Figure 12. This can be caused by lack of lubrication, plugged water passages or operating the engine under continuous overload at excessive engine RPM. Replace valves if this condition exists.

Inspect the valves for deep grooves in the face, Figure 13. This can be caused by abrasives entering the engine through the intake system or not servicing the air cleaner re-

gularly. If grinding the valve face will not

correct this condition, replace the valve.

Inspect the valve face and stem for rust or pitting, Figure 14. Rust or pitting can usually be removed by grinding the valve face. If rust or pitting on the valve stem exists, replace the valve. These conditions can be caused by using poor quality engine oil or fuel that does not meet the specification given in Section 11 and by improper storing of the engine.

INSPECTION OF VALVES, GUIDES, HEAD AND SPRINGS (Cont'd)

Heavy carbon or varnish deposits on the valves, Figure 15, should be removed before valves are ground. This condition is usually caused by worn piston rings and sleeves which allow too much oil to reach the combustion chamber. This conditions could also be caused by worn valve guides or bad seals on the valves. Low operating temperature is still another cause.

Inspect the valve head for dishing and the valve face for deep burned spots, Figure 16. These conditions cannot be corrected by grinding the valves. The valves must be replaced. These conditions are usually caused by running the engine under excessive loads at high engine temperatures.

Valves with worn keeper grooves or if the stem tip is worn or dished beyond the chamfer, replace the valves, Figure 17.

WORN RETAINER GROOVE Figure 17

The checking of the valve stem diameter can be best be done with a good, accurate micrometer, Figure 18. The valve stem being straight, should be measured at three points along the stem, Figure 18. Wear limit must not exceed .002" at all points of measurement. If the wear is greater, replace the valve. CHECK DIAMETER OF STEM AT THREE POINTS

Figure 18

The checking of the valve face runout should be done after the valves have been ground. A Vee block type holder with a dial indicator, Figure 19 can be used to check the valve face and stem runout. The valve face runout should not exceed more than .002''. The valve stem runout should not exceed .002". If the valve face and/or valve stem runout is greater, the valve must be replaced.

NOTE: Small amounts of very fine pitting, Figure 20, may be found on the surfaces of the valves faces and seats after the valves are cleaned. These are normal and will not affect engine performance. This fine pitting is caused by a normal oxidation process and can happen on any engine during the run-in period. It is not necessary to grind valves or seats if this fine pitting is found as the pitting will generally reoccur after the engine is run for a few hours.

REFACING INTAKE AND EXHAUST VALVES

Before refacing the valves, they should be wire brushed, cleaned and inspected. A 44^o angle is the correct valve face grinding angle. Set the refacing machine protractor at this angle. Be sure the chuck of the machine is clean before installing the valve. Dress the grinding wheel before starting to reface the valves. Take only light cuts as the valve is refaced. The last cut must be very fine so the valve face will have a polished finish.

IMPORTANT: Replace any valve that has a thin edge or margin, Figure 21. If the margin on the ground valve is less than half the margin on a new valve, replace the valve.

The tip end of the valve should be checked for roughness or wear. Usually this can be removed with some very light cuts against the side of the grinding wheel and will square up the end. Never grind off the valve stem end beyond the chamfer. Correct refacing of intake and exhaust valves and valve seats will provide a 1^0 interference angle. This angle is important since it aids in cutting carbon and helps seat the valves.

Figure 22

When the top edge of the contact area is too high or low on the valve face, the seat contact area must be moved. This is done by using the narrowing stones. Refer to Page 15. The contact area width should never exceed the specified dimension of .0608" to .0962" (exhaust valve) and .704" to .1057" (intake valve).

GRINDING INTAKE AND EXHAUST VALVE SEATS

Always use a precision seat grinder. Take very light cuts with the grinding stones so just enough metal is removed to end up with a good smooth seat finish.

The proper angle of grind is 45° for exhaust value and intake value seats, Figure 23. The seat grinding angle of the stone should be dressed frequenctly on a stone dresser to maintain a clean accurate surface.

INTAKE VALVE SEAT

Figure 23

IMPORTANT: The valve seat runout should be checked after finish grinding with a dial indicator and seat grinding pilot, Figure 24. The runout of the valve seat must not exceed .002".

Figure 24

The valve seat contact area width and location can be changed by using the 30° and 60° narrowing stones, Figure 25.

NOTE: If the valve head has receded more than .010" (exhaust valve and intake valve) below the cylinder head surface, Figure 26, the valve or valve insert or both should be replaced to keep the compression ratio equal between cylinders for an efficient running engine.

Figure 26

LOCATING TOP DEAD CENTER AND TAPPET ADJUSTMENTS

FIRING ORDER ------ 1-3-4-2

The Top Dead Center position of number 1 and 4 cylinders is indicated by the TDC mark on the flywheel. Refer to Figure 27

The tappet adjustments can be done in two steps as described in the following manner.

COLD SETTING

STEP 1 - Remove the valve cover. Crank the engine until the timing pointer is aligned with the TDC timing mark on the flywheel, Figure 27. Check the push rods on No. 1 cylinder for looseness. If the push rods are loose, No. 1 cylinder is at TDC on the compression stroke. If the push rods are tight, crank the engine one complete revolution and align the pointer and the TDC mark on the flywheel, Figure 27.

Check and adjust the following valve clearances; intake valve at .014" clearance on cylinders 1 and 2, and the exhaust valves on cylinders 1 and 3 at .014" clearance, Figure 28.

STEP 2 - Crank the engine one complete revolution and align the timing pointer and the TDC mark on the flywheel, Figure 27. CylTIMING POINTER

Figure 27

inder No. 4 should be at TDC on the compression stroke. Check the push rods on No. 4 cylinder for looseness.

Check and adjust the following valve clearances; intake valves at .014'' clearance on cylinders 3 and 4, and the exhaust valves on cylinders 2 and 4 at .014'' clearance, Figure 28.

HOT SETTING

Follow steps 1 and 2 while the engine is hot. The tappet clearances for hot settings are .014" for the intake valves and .014" for the exhaust valves.

IMPORTANT: The valve tappet clearance is a critical adjustment.

The entire combustion system of the engine will be seriously affected by adjusting the valve tappet clearance to any other setting.

Excessive clearance will change the valve timing and could result in overheating, power loss and possible valve breakage.

Insufficient clearance would allow the valves to remain open and be burned by the hot exhaust gases.

Section

ENGINE BLOCK ASSEMBLIES

188D DIESEL AND 188G, 159G, 148G SPARK IGNITION ENGINES

TABLE OF CONTENTS

Specifications	3-7
Special Torques	3-7
Engine Lubrication	3-9
Flywheel, Oil Pan, Seal Retainer and Oil Filter 23-10 to 23-1	13
Diesel Timing Gear Cover, Gears and Water Pump	17
Spark Ignition Timing Gear Cover, Gear and Water Pump 23-18 to 23-2	21
Camshaft, Bushings and Lifters	25
Pistons, Rings, Sleeves and Connecting Rods - Disassembly, Inspection 23-26, 23-2	27
Cylinder Sleeves - Inspection	28
Cylinder Sleeves - Deglazing	29
Cylinder Sleeves - Honing	30
Pistons and Cylinder Sleeves - Inspection	31
Pistons, Rings, Sleeves and Connecting Rods - Assembly 23-32 to 23-3	-35
Crankshaft, Bearings, Liners and Oil Pump 23-36 to 23-3	39
Oil Pump	41
Thermostat and Fan Belt	43
Locating Top Dead Center	44

NOTE: All dimensions are given in inches. Specifications apply to all engines unless noted. Maximum Limit Including Wear CYLINDER SLEEVES PISTON Type Cam Ground Material Aluminum Alloy O.D. at bottom of skirt: 90° to piston pin (188G) 3.8090 to 3.8105 (148G) 3.3735 to 3.3750 I.D. of piston pin bore (188D) 1.2500 to 1.2503 Width of 1st ring groove (188D) Keystone Type PISTON RINGS No. 1 Compression (188D) Chrome Grooved Keystone (188G, 159, 148G) Tapered Face Width (188D) Not measureable

SPECIFICATIONS

PISTON RINGS (Continued)

Side clearance (188D) Not measureable No. 2 Compression (188G, 159G, 148G) Tapered Face (188D) Grooved No. 2 Compression No. 3 Compression (188G,159G,148G) Tapered Face OIL RINGS Maximum Limit Including Wear

Maximum Limit Including Wear

,

Type Full Floating	
O.D. of pin (188D) 1.2497 to 1.2498	
(188G, 159G)	
(148G)	
Fit in piston (188D)	
(188G, 159G)	
(148G)	
Fit in rod bushing (188D)	
(188G,159G,148G)	
CONNECTING ROD	
Bushing Replaceable Bronze	
Bushing I.D. installed (reamed to size)	
(188G,159G)	
(188D) 1.2502 to 1.2504	
(148G)	
Bushing out-of-round	
Bearing Liners Replaceable	
Bearing liner width 1.120 to 1.130	
Rod width at crank end 1.3035 to 1.3055	
Journal I.D. without bearing liners 2.1870 to 2.1875	
Bearing oil clearance	
Undersize bearings for service	
Side clearance	
Cap bolts Self locking type	
CRANKSHAFT	
Type Balanced	
Main bearing liners Replaceable	
End play, center main bearing cap	
Thrust spacer std. thickness	
Connecting rod journal std. O.D 2.0605 to 2.0615	
Grind to .010" O.D. undersize 2.0505 to 2.0515	
.020" O.D. undersize 2.0405 to 2.0415	
.030" O.D. undersize 2.0305 to 2.0315	

PISTON PIN

Maximum Limit Including Wear

CRANKSHAFT (Continued)

.

Journals out-of-round
Main bearing liner width 1st, (188D, 188G) 1.276 to 1.286
Main bearing liner width 1st, (159G, 148G) 1.870 to 1.880
Main bearing liner width 3rd (188D) 1.371 to 1.373
Main bearing liner width 2nd (188G) 1.371 to 1.373
Main bearing liner width 2nd and 4th (188D)
Main bearing liner width 5th (188D), (188G 3rd.) 1.557 to 1.567
Undersize main bearing liners for service
Main bearing oil clearance
Main bearing journal std. O.D. (188G, 188D) 2.8730 to 2.8740
(159G,148G) 2.6230 to 2.6240
Grind to:
.010" O.D. undersize, (188G, 188D) 2.8630 to 2.8640
.020" O.D. undersize, (188G, 188D) 2.8530 to 2.8540
.030" O.D. undersize, (188G, 188D) 2.8430 to 2.8440
.010" O.D. undersize, (159G, 148G) 2.6130 to 2.6140
.020" O.D. undersize, (159G, 148G) 2.6030 to 2.6040
.030" O.D. undersize, (159G, 148G) 2.5930 to 2.5940
Main journal bore I.D. w/o liners (188D, 188G) 3.066 to 3.067
(159G,148G) 2.816 to 2.817
Main journal width between cheeks:
2nd (159G, 148G) 1.499 to 1.502
2nd and 4th (188D) 1.185 to 1.189
2nd (188G) 1.3770 to 1.3740
3rd (188D) 1.3740 to 1.3770
3rd (159G,148G) 1.741 to 1.751
5th (188D) 1.745 to 1.755
Connecting rod journal width between cheeks 1.3105 to 1.3145
CAMSHAFT
Type Parabolic
Bushings (188D) 5, Replaceable
Bushings (188G) 4, Replaceable
Bushings (159G, 148G) 3, Replaceable
Oil Clearance

Maximum Limit Including Wear

CAMSHAFT (Continued)

Bushing lubrication:	
Front bushing Pressure lubricated	
from oil pump.	
Intermediate bushing Gravity flow lubricated	
Rear bushing (188D Only) Pressure lubricated with	
rear oil metering.	
Oil clearance	
I.D. of bushing installed 1.752 to .1753	
Bushing width:	
1st (front) (159G,148G) 1.307 to 1.317	
1st (front) (188D, 188G) 1.213 to 1.223	
2nd (159G,148G)	
2nd, 3rd & 4th (188D)	
2nd, & 3rd. (188G)	
3rd (rear) (148G, 159G) 1.177 to 1.197	
4th (rear) (188G) 1.213 to 1.223	
5th (rear) (188D) 1.213 to 1.223	
O.D. of each bearing surface (159G,188D) 1.749 to 1.750	
O.D. of each bearing surface (148G,188G) 1.749 to 1.750	
Thrust plate thickness	
Camshaft end play Taken up by thrust plate	
Camshaft end clearance	
VALVE PUSH ROD LIFTERS	
Type Mushroom	
Body O.D. std	
I.D. of block bore, std	
GEAR TRAIN	
Backlash:	
Crankshaft gear to camshaft gear	
Camshaft gear to idler gear (Diesel)	
Idler gear to fuel pump gear (Diesel)	
Crankshaft gear to oil pump gear	
Crankshaft gear to fuel pump gear (Diesel) Maximum .019	

Maximum Limit Including Wear

Backlash, crankshaft drive gear and oil pump gear002 to .008

SPECIAL TORQUES

Camshaft nut	80 to	90 (Ft.	lbs.
Connecting rod nuts	45 to	55 3	Ft.	lbs.
Crankshaft nut 15	25 to 1	.35	Ft.	lbs.
Flywheel to crankshaft bolt	65 to	70	Ft.	lbs.
Main bearing cap bolts	90 to 1	.00	Ft.	lbs.
Oil pan capscrews (Stamped steel)	10 to	12	Ft.	lbs.
Oil pan capscrews (Cast iron)	24 to	28	Ft.	lbs.
Oil pan to seal retainer	15 to	20 (Ft.	lbs.
Oil pan drain plug Oil pump cover capscrews	18 to 1 6 to	20 : 8 :	Ft. Ft.	lbs. lbs.
Oil seal retainer bolts (Grade 8 bolts)	12 to	15	Ft.	lbs.
Fuel pump drive gear nut (Diesel)	35 to	40	Ft.	lbs.

ENGINE LUBRICATION

FLYWHEEL, OIL PAN, SEAL RETAINER AND OIL FILTER

(Refer to Figure 4)

Disassembly

- 1. Remove the oil pan drain plug (1) with gasket (2) to drain the engine and remove the engine oil filter (6) and discard.
- 2. Remove the oil pan bolts (13) and gasket (14). Remove all the gasket material from block and oil pan.
- 3. Remove the dipstick (3), extension tube (2),"O" ring and clamp (4) if equipped, and the dipstick socket (5) if it needs replacing.
- 4. Remove adapter (8) and plug (7) if adapter requires replacement.

NOTE: On engines equipped with the timing marks on the flywheel it is advisable to rotate the flywheel until the TDC mark is lined up with timing pointer. Then scribe a mark on the front crankshaft pulley and timing cover.

5. Remove the flywheel mounting bolts (15) or (18) and flywheel assembly (16 or 19) and

output hub (29) (Hydrostatic Tractor Only). If the ring gear (17 or 20) is worn or damaged, it must be driven or broken off the flywheel to be removed.

- 6. For dry clutch tractor flywheel, Inset A, remove oil seal (21), snap ring (23) and "O" ring (22). Press bearing (24) out of flywheel.
- 7. Remove the rear oil seal retainer (26) and gasket (27). Press seal (28) from retainer (26).
- 8. Remove any cup plugs from block that need replacing by drilling a hole in them and pulling them out.
- 9. To remove the Diesel tachometer drive (30), a puller can be made from an old tachometer drive cable. Cut off the end that screws into the drive and weld a stud to it. With this tool, pull the tachometer drive.

Inspection

Replace all damaged or worn parts, oil seals, gaskets, "O" rings and oil filter.

23-11

FLYWHEEL, OIL PAN, SEAL RETAINER AND OIL FILTER

(Refer to Figure 5)

Assembly

- 1. To install new cup plugs, coat the bore with Gasolia or equivalent and install the cup plugs until the outer edge is even with the inner edge of the chamfer in the bore. Install the tachometer drive (30) (Diesel only) into the block, engaging the gear on the camshaft.
- 2. Press in new rear oil seal (28) into the retainer (26) (seal lip in toward block) flush with rear of retainer, Inset A. Assemble gasket (27) to retainer and lay a bead of Permatex No. 2 on both sides of the gasket.
- 3. Using a Case No. G15028 Sleeve, Inset C, slide the oil seal (28) and retainer (26) onto the crankshaft.
- 4. Remove the sleeve and install a Case No. G13506 Aligning Tool, Inset D with the tool pins in the aligning pin holes in the flange, refer to Inset G, below. The tool must be installed over the flange on the crankshaft.
- 5. Install the two bottom and the top bolts (25). Tighten the bolts slightly then remove the aligning tool.
- 6. Install the remaining bolts and lockwashers (25), then torque 12 to 15 ft. lbs.
- 7. Preheat the new flywheel ring gear (17 or 20) 400 to 450°F., either in oil or an oven. Do not use a torch. Install the ring gear with the large chamfer toward the flywheel, Inset E.
- 8. On dry clutch tractor flywheel (19), Inset B, install snap ring (23) in groove of flywheel. Press bearing (24) in until seated against the snap ring from the gear side of flywheel. Install new oil seal (21) from rear side with lip inward until seated against the snap ring. Install new "O" ring (22). Lubricate the oil seal and "O" ring with drive-way oil.

9. Install the flywheel assembly (19 or 16) to the crankshaft with output hub (29) (Hydrostatic Tractor only). **IMPORTANT:** Prior to installing output hub (29), lubricate the spline hole and face of hub liberally with #2 Moly Disulfide Grease. Torque the retaining bolts 65 to 70 ft. lbs.

ŧ

- 10.Install dipstick socket (5) into the block to the depth shown in Inset F.
- 11. Press the filter adapter (8) into the block flange until seated. Press plug (7) in until seated against the adapter. Apply a thin coat of new oil or grease to the gasket of new oil filter (6) and install turning clockwise until gasket contact is made. Hand tighten 1/2 of a turn and loosen filter. Retighten until gasket contact is made and hand tighten 1/2 to 3/4 of a turn to obtain the proper sealing without damaging the filter.
- 12. Install a new oil pan gasket (14) and oil pan (13) to block with the long bolts to the rear. Torque the bolts 24 to 28 ft. lbs. for cast iron pan, 10 to 12 ft. lbs. for stamped steel oil pan. Torque the rear bolts 15 to 20 ft. lbs.
- 13. Install the oil pan drain plug (9) with new gasket (10). Torque 18 to 20 ft. lbs. Refill the engine crankcase with the proper amount of oil.

DIESELTIMING GEAR COVER, GEARS AND WATER PUMP

(Refer to Figure 6)

Disassembly

- 1. Remove fan blade (1), pulley (2), water pump (3) and gasket (4).
- 2. Remove the pump drive cover (5), gasket (6), plunger (7) and spring (8). Remove nut and lockwasher (9) and pump drive gear (10).
- **3.** Remove lock plate pointer (11), thrust plate (12), shims (13), idler gear (14) and journal (15).
- 4. Remove bolt and washer (16), (17), bushing

(18) and flexible coupler (if equipped). Remove pulley retainer nut (20), and pull the crankshaft pulley (21) with key (22).

- 5. Remove the timing gear cover (23) and gasket (24) and (30). Press the seal (25) from the timing gear cover.
- 6. Remove the nut (26) and lockwasher (27). Pull the camshaft gear (28) with key (29).

Inspection

Clean all parts thoroughly before inspecting

Inspect the gears for chipped teeth, burrs, or excessive wear. Light burrs and nicks can be removed with a hone or crocus cloth. Replace if damaged or worn.

Using an inside micrometer or a bore gauge and micrometer, check the inside diameter of the pump drive idler gear bushing. The maximum allowable inside diameter is 1.378". Replace the entire idler gear if the bushing exceeds this dimension or is otherwise damaged.

Inspect the idler gear journal for a plugged oil hole. Blow out with compressed air.

Check the end of the thrust plunger for excessive wear. Make sure the plunger is free in the bore of the injection pump drive shaft. Replace if necessary.

Inspect the idler gear journal with a micrometer, as shown in Inset A. The minimum outside dimension is 1.374". Replace the journal if this dimension is less.

Inspect the pump drive shaft for stripped or damaged threads, burrs, nicks or other damage.

Rethread slightly damaged threads; burrs and nicks may be removed with a hone or crocus cloth.

Inspect the oil passage in the engine block which mates with pump drive idler gear journal oil groove. This passage must be free of dirt or other foreign particles.

Inspect the thrust spring for the following specifications:

Free length	1.22''
O.D	.255''
Total coils	15
Wire diameter	.038″
Compressed to .950" 6 lbs.	4 oz.

Inspect the water pump for leaks or worn bearings. If these conditions exist, replace the pump assembly.

Check the fan pulley for wear and the fan blade for damage. Replace them if these conditions exist. This as a preview PDF file from **best-manuals.com**

Download full PDF manual at best-manuals.com