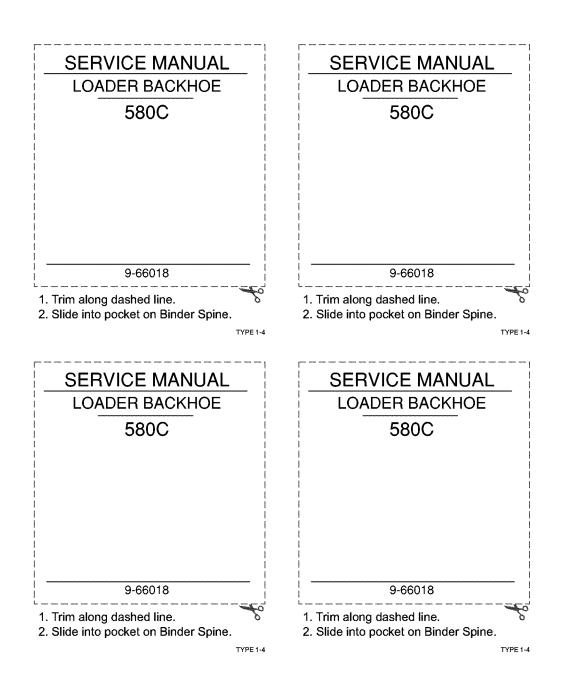
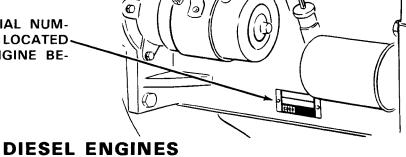
580C LOADER BACKHOE TABLE OF CONTENTS AND SERVICE MANUAL INTRODUCTION


SERIES/SECTION	SECTION NO.	FORM NO.
10 GENERAL		
General Engine Specification		
207 Diesel Engine		9-79315
Detailed Engine Specifications		
207 Diesel Engine		9-78685
Maintenance and Lubrication		9-66015
Torque Charts		8-42200
Noise Control		9-66015
20 ENGINES		
Engine Diagnosis	2001	9-78875
Engine Tune Up		9-78825
Cylinder Head, Valve Train and Camshaft	2015	9-78836
Crankshaft, Bearings, Flywheel and Oil Seals		9-78866
Oil Pump		9-78885
Stall Checks, Engine Removal and Installation		
and Radiator		9-66015
Air Cleaner and Spark Arresting Muffler		9-66015
Ether Injection		9-66015
Cooling System		9-78816
Cylinder Block, Sleeves, Pistons and Rods		9-78845
Engine Lubrication		9-78985
30 FUEL SYSTEM		
30 FUEL SYSTEM Fuel Filters	2010	9-78785
Fuel Injection Pump		9-78795
Fuel Injectors		9-78807
Engine Controls, Fuel Lines and Fuel Tank		9-66015
		•••••
40 HYDRAULICS		
Hydraulic Diagrams, Maintenance, Troublesh	ooting	
and Pressure Checks		9-66015
Hydraulic Pump		9-66015
Loader Control Valve		9-66015
Three-Point Hitch Control Valve		9-66015
Loader, Backhoe and Three-Point Hitch Cylir	nders 4090	9-66015
Backhoe Control Valve		9-66015
Stabilizer Control Valve		9-66015
Boom Lock System		9-66015
50 STEERING		
Hydraulic Diagram, Troubleshooting and Pressure Check	5002	9-66015
Steering Pump		9-66015
Steering Control Valve		9-66015
Steering Cylinders		9-66015
Front Axle		9-66016
		0 00010

CASE CORPORATION

SERIES/SECTION


60	POWER TRAIN	
	Power Shuttle Operation, Oil Flow Diagrams,	
	Troubleshooting and Maintenance	9-66015
	Power Shuttle and Torque Converter	9-66016
	Shuttle Controls (Power and Mechanical)	9-66015
	Transaxle Removal and Installation	9-66015
	Transaxle and Differential Lock	9-79237
	Drive Shaft	9-66015
	Wheels and Tires	9-66015
	Clutch and Pressure Plate 6406	9-66015
	Two Speed Mechanical Shuttle	9-79117
70	BRAKES	
	Brakes (Pedals to Transaxle) 7106	9-66016
	Self Adjusting Differential Brakes	9-79246
80	ELECTRICAL	
	Troubleshooting	
	Wiring Diagrams	
	Instrument Panel and Instrument Cluster	9-66015
	Battery	5 9-66015
	Starter and Starter Solenoid 8006	9-66015
	Nippondenso Starter	9-66015
	Alternator	
	Electrical Accessories	9-66016
90		
	Loader	9-66015
	Three-Point Hitch	
	ROPS Cab and Canopy 906	9-66015
	Backhoe	9-66016

Section 1010

GENERAL ENGINE SPECIFICATIONS 580C TRACTORS

THE MODEL AND ENGINE SERIAL NUM-BER IS STAMPED ON A PLATE LOCATED ON THE RIGHT SIDE OF THE ENGINE BE-LOW THE CRANKING MOTOR.

General

Type Case Open Chamber, 4 Cylinder, 4 Stroke Cy Firing Order	
Bore	
Stroke	4-1/8 Inches
Piston Displacement	207 Cubic Inches
Compression Ratio	16.5 to 1
No Load Governed Speed	. 2230 to 2270 RPM
Rated Engine Speed	2100 RPM
Engine Idling Speed	700 to 750 RPM
*Valve Tappet Clearance (Exhaust) (Hot a	ind Cold) .014 Inch
(Intake) (Hot a	ind Cold) .012 Inch
*Hot Settings Are Made After the Engine Has Operated At Thermostat Controlled	1 Temperature For
At Least Fifteen Minutes.	

Piston and Connecting Rods

Rings per Piston	3
Number of Compression Rings	2
Number of Oil Rings	
Type Pins	
Type Bearing Replaceable Precision, Steel Back, Copper-Lead or Aluminum Alloy Liner	rs

Main Bearings

Number of Bearings	
Type Bearings Replaceable	

Engine Lubricating System

Crankcase Capacity (Without Filter)	6 Quarts
(With Filter Change)	7 Quarts
Oil Pressure 50 to 70 Pounds with Engine Warm and Operating at Rated Eng	ine Speed
Type System Pressure and Spray C	
Oil Pump Oil Pump	ear Type
Oil Filter Full Flow Spir	n on Type

Fuel System

Fuel Injection Pump	Roosa-Master
Pump Timing	8 Degrees Before Top Dead Center
Fuel Injectors	Pencil Type (Opening Pressure 2800 PSI)
Fuel Transfer Pump	Vane Type, Integral Part of Injection Pump
Governor Variable Speed, Fly-Weight	Centrifugal Type, Integral Part of Injection Pump
Fuel Filters	Full Flow Spin on Type

Section 1026

DETAILED SPECIFICATIONS

207 Diesel Engines

FRACTION to DECIMAL to MILLIMETER CONVERSION TABLE

Fraction	Decimal	MM	Fraction	Decimal	MM	Fraction	Decimal	ММ
1/64	.0156	0.397	23/64	.3593	9.128	45/64	.7031	17.859
1/32	.0312	0.794	3/8	.3750	9.525	23/32	.7187	18.256
3/64	.0468	1.191	25/64	.3750	9.922	47/64	.7343	18.653
1/16	.0625	1.587	13/32	.4062	10.319	3/4	.7500	19.050
5/64	.0781	1.984	27/64	.4218	10.716	49/64	.7656	19.447
3/32	.0937	2.381	7/16	.4375	11.113	25/32	.7812	19.844
7/64	.1093	2.778	29/64	.4531	11.509	51/64	.7968	20.240
		0 475	15/32	.4687	11.906	13/16	.8125	20.637
1/8	.1250	3.175	31/64	.4843	12.303	53/64	.8281	21.034
9/64	.1406	3.572				27/32	.8437	21.431
5/32	.1562	3.969	1/2	.5000	12.700	55/64	.8593	21.828
11/64	.1718	4.366	33/64	.5156	13.097	55/04	.0000	
3/16	.1875	4.762	17/32	.5312	13.494	7/8	.8750	22.225
13/64	.2031	5.159	35/64	.5468	13.890	57/64	.8906	22.622
7/32	.2187	5.556	9/16	.5625	14.287	29/32	.9062	23.019
15/64	.2343	5.953	37/64	.5781	14.684	59/64	.9218	23.415
1/4	.2500	6.350	19/32	.5937	15.081	15/16	.9375	23.812
17/64	.2656	6.747	39/64	.6093	15.478	61/64	.9531	24.209
9/32	.2812	7.144	5/8	.6250	15.875	31/32	.9687	24.606
9/32 19/64	.2968	7.541	41/64	.6406	16.272	63/64	.9843	25.003
5/16	.3125	7.937	21/32	.6562	16.669			
						1	1.0000	25.400
21/64	.3281	8.334	43/64	.6718	17.065			
11/32	.3437	8.731	11/16	.6875	17.462			

INCH to MILLIMETER CONVERSION TABLE

Inch	ММ	Inch	MM	Inch	MM	Inch	MM
1	25.400	6	152.000	10	254.000	60	1,524.000
2	50.800	7	177.800	20	508.000	70	1,778.000
3	76.200	8	203.200	30	762.000	80	2,032.000
4	101.600	9	228.600	40	1,016.000	90	2,286.000
5	127.000	10	254.000	50	1,270.000	100	2,540.000

TABLE OF CONTENTS

RUN-IN INSTRUCTIONS
DETAILED ENGINE SPECIFICATIONS 5-10
Cylinder Sleeves
Piston
Piston Rings
Piston Pin
Connecting Rod
Crankshaft
Camshaft
Valve Push Rod Lifters
Gear Train
Oil Pump 8
Cylinder Head 8
Intake Valve
Exhaust Valve
Intake and Exhaust Valve Guides
Valve Spring
Rocker Arm Assembly 10
SPECIAL TORQUES 10
GENERAL TORQUE SPECIFICATION TABLE 11

.

RUN-IN-INSTRUCTIONS

Engine Lubrication

When the engine rebuild is complete, fill the engine crankcase with Case HDM oil and install new engine oil filter. **NOTE:** If Case HDM oil is not used, use only a Series 3 DS or CD Service Classification oil that has the proper viscosity rating for prevailing air temperature. Refer to vehicle Operator's Manual.

After the first 20 hours of operation, change the engine oil while the engine is hot and replace the engine oil filter. DO NOT DRAIN OIL UNTIL THE ENGINE HAS BEEN OPERATED 20 HOURS.

Change the engine oil and filter at the recommended intervals thereafter as outlined in the Operator's Manual.

Break-In Procedure for Rebuilt Engines (With a Dynamometer)

The following procedure must be implemented when using a PTO dynamometer to break-in the engine. The dynamometer will insure control of the engine load at each speed and will eliminate over stressing new parts during break-in.

During the break-in, continually check the oil pressure, coolant level, and coolant temperature.

STEP	TIME	ENGINE SPEED	DYNAMOMETER SCALE LOAD*
1	**10 Minutes	1000 RPM	None
2	**10 Minutes	1800 RPM	None
3	20 Minutes	1800 RPM	1/3
4	20 Minutes	1800 RPM	1/2
5	***30 Minutes	100 RPM below rated speed	3/4
C	Detensive the	outlinden head halts using the	procedure described in Section 2015

6 Retorque the cylinder head bolts using the procedure described in Section 2015 of this service manual.

*Based upon normal dynamometer scale load at rated speed for the particular vehicle model. Reduce this scale load as indicated.

- **The most ideal break-in procedure would be to constantly vary the throttle between 750 to 1000 RPM for the first 10 minutes and from 1000 RPM to 1800 RPM for the next 10 minutes. The purpose of this changing RPM is to vary the lubrication and coolant flow.
- ***30 minutes at 3/4 load is a minimum amount of time the engine should be run. It is recommended that whenever possible the engine (especially turbocharged diesels) should be run for four (4) hours or more at the above speed and load before checking the full engine horsepower or before using the engine for heavy field work.

Break-In Procedure for Rebuilt Engines (Without a Dynamometer)

STEP	TIME	ENGINE SPEED	LOAD	
SILF		ENGINE SPEED	LOAD	
1	*10 Minutes	1000 RPM	None	
2	*10 Minutes	1800 RPM	None	
3	30 Minutes	2/3 Rated RPM	Light Load	
4	1 Hour	Full RPM (not over 2000 RPM)	80 to 90%	
5	Retorate the	cylinder head holts using the procedure	described in Section	2015

5 Retorque the cylinder head bolts using the procedure described in Section 2015 of this service manual.

*If engine must then run at or near full load to operate the machine - for first hour remove load and run at high idle for a few minutes at 15 minute intervals.

Run-In Procedure (Agricultural Tractors)

For the first 8 hours of field operation stay one gear lower than normal. For the next 12 hours DO NOT "lug" the engine. Prevent "lugging" by shifting to a lower gear. The engine must not be "lugged" below its Rated Engine RPM during the early hours of life.

Run-In Procedure (Construction Equipment)

For the first 8 hours, operate the engine at full throttle maintaining a normal load. DO NOT baby the engine, but avoid prolonged converter or hydraulic stall. Engine must not be "lugged" below its Rated Engine RPM (Do not exceed 10 seconds of stall).

Run-In Procedure (Power Units)

For the first 1/2 hour, operate engine at 2/3 rated RPM with a light load or no load. For the next (1) hour, run engine at 80 to 90% load at rated RPM (but not over 2000 RPM). Then full load and rated RPM as required in application.

DETAILED ENGINE SPECIFICATIONS

Cylinder Sleeves	U.S. Value	Metric Value
Type	Replaceable, Wet	
Material	Chrome Plated Steel	
I.D. of sleeve	4.000 to 4.0010"	101.600 to 101.625mm
Maximum Serviceable Limit	4.0020″	101.651mm
Sleeve out-of-round (installed in block)		.025mm max.
Taper (installed in block)		.051mm max.
Clearance to bottom of piston skirt, 90° to p	iston pin0040 to .0060"	.102 to .152mm
Maximum Serviceable Limit		.203mm

Piston

Type Cam ground	
Material Aluminum Alloy	
O.D. at bottom of skirt, 90° to piston pin 3.9950 to 3.9960"	101.473 to 101.498mm
Minimum Serviceable Limit 3.9940"	101.448mm
I.D. of piston pin bore including wear 1.2500 to 1.2508"	31.750 to 31.770mm
Width of 1st ring groove Keystone Type	
Width of 2nd ring groove	2.464 to 2.489mm
Maximum Serviceable Limit	2.540mm
Width of 3rd ring groove	4.788 to 4.813mm
Maximum Serviceable Limit	4.864mm

Piston Rings

No. 1 Compression Moly Faced Keystone	
End gap in 4.000 I.D. (101.600mm I.D.) sleeve	.381 to .635mm
Maximum Serviceable Limit	.889mm
WidthNot Measurable	
Side Clearance Not Measurable	
No. 2 Compression Rectangular Grooved Back	
End gap in 4.000 I.D. (101.600mm I.D.) sleeve	.330 to .584mm
.033" Maximum Serviceable Limit	.838mm
Side clearance	.089 to .127mm
Maximum Serviceable Limit	.203mm

Piston Rings (Cont'd.)	U.S. Value	Metric Value
No. 3 Oil Control Ring	Two Piece	
End gap in 4.000 I.D. (101.600mm I.D.) sleeve Maximum Serviceable Limit		.330 to .584mm .838mm
Side clearance		.051 to .089mm
Maximum Serviceable Limit		.127mm

Piston Pin

Туре	Full Floating	
O.D. of pin	1.2495 to 1.2498″	31.737 to 31.745mm
Fit in piston		.005 to .025mm
Fit in rod bushing		.010 to .038mm

Connecting Rod

Bushing	Replaceable Bronze	
Bushing I.D. installed (ream to size)	1.2502 to 1.2504"	31.755 to 31.760mm
Maximum Serviceable Limit		31.775mm
Bearing liners	Replaceable	
Journal I.D. without bearing liners	2.4002 to 2.4007"	60.965 to 60.978mm
Bearing oil clearance		.025 to .102mm
Undersize bearings for service		.051,.254,.508,.762mm
Side clearance		.127 to .279mm

Crankshaft

Type Hardened Steel Balanced	
Main bearing liners Replaceable	
End play, center main bearing cap	.025 to .381mm
Center main bearing thrust surface thickness1025 to .1045"	2.603 to 2.654mm
Connecting rod journal std. O.D 2.2480 to 2.2490"	57.099 to 57.125mm
.002" (.051mm) O.D. undersize, grind to $\dots 2.2460$ to $2.2470''$	57.048 to 57.074mm
.010" (.254mm) O.D. undersize, grind to 2.2380 to 2.2390"	56.845 to 56.871mm
.020" (.508mm) O.D. undersize, grind to 2.2280 to 2.2290"	56.591 to 56.617mm
.030" (.762mm) O.D. undersize, grind to 2.2180 to 2.2190"	56.337 to 56.363mm
Connecting rod journal maximum taper	.025mm
Journals out-of-round	.013mm
Undersize main bearing liners for service	.051,.254,.508,.762mm
Main bearing oil clearance $\dots \dots \dots$.031 to .107mm

Metric Value

72.974 to 73.000mm 72.923 to 72.949mm 72.720 to 72.746mm 72.466 to 72.492mm 72.212 to 72.238mm 77.876 to 77.902mm

Crankshaft (Cont'd.)

Main bearing journal std. O.D.	2.8730 to	2.8740″
.002" (.051mm) O.D. undersize, grind to	2.8710 to	2.8720″
.010" (.254mm) O.D. undersize, grind to	2.8630 to	2.8640"
.020" (.508mm) O.D. undersize, grind to	2.8530 to	2.8540″
.030" (.762mm) O.D. undersize, grind to	2.8430 to	2.8440″
Main bearing journal bore I.D. without liners	3.066 t	o 3.067″
Main journal width between cheeks:		

2nd & 4th 1.185 to 1.189"	30.099 to 30.201mm
3rd 1.374 to 1.377"	34.900 to 34.976mm
5th 1.745 to 1.755"	44.323 to 44.577mm
Connecting rod journals width between cheeks $\dots 1.3105$ to $1.3145^{\prime\prime}$	33.287 to 33.388mm

U.S. Value

Camshaft

. .

Type Harde	ned Iron Parabolic	
Bushings	5, Replaceable	
Bushing Lubrication:		
Front Bushing I	Pressure lubricated from oil pump.	
Intermediate Bushing Gravi	ity Flow lubricated	
Rear Bushing Pressu	ure lubricated with rear oil metering.	
Oil clearance	002 to .007"	.051 to .17
I.D. of bushing installed	1.752 to 1.753"	44.501 to 44.52
Maximum Serviceable Limit	1.755″	44.57
Bushing width:		
¹ lst (front)	1.213 to 1.223"	30.810 to 31.00
2nd, 3rd and 4th		12.446 to 12.70
5th (rear)	1.213 to 1.223″	30.810 to 31.00
O.D. of each bearing surface	1.749 to 1.750"	44.425 to 44.45
Minimum Serviceable Limit	1.748″	44.3
Thrust washer thickness	147 to .149″	3.734 to 3.78
Minimum Serviceable Limit	tain end clearance	
Camshaft end play Taken up	o by thrust washer	
Camshaft end clearance	003 to .007"	.076 to .1
Valve Push Rod Lifters		

Material	Hardened Steel
Туре	Mushroom
O.D. of lifter stem	
I.D. of block bore, including wear	

178mm 526mm 577mm

30.810	to	31.064mm
12.446	to	12.700mm
30.810	to	31.064mm
44.425	to	44.450mm
		44.399mm
3.734	1 to	o 3.785mm

.178mm

14.237 to 14.249mm 14.287 to 14.351mm

Gear Train U.S.	Value Metric Value
Backlash:	
Crankshaft gear to camshaft gear	o .006" .005 to .152mm
Camshaft gear to idler gear	o .006" .010 to .152mm
Idler gear to fuel pump gear	o .007" .013 to .178mm
Crankshaft gear to oil pump gear	o .008" .051 to .203mm
Crankshaft gear to fuel pump gear	o .019" .013 to .483mm
O.D. of idler gear shaft 1.3745 to 1	1.3755" 34.912 to 34.938mm
Minimum Serviceable Limit 1	1.3740″ 34.900mm
I.D. of idler gear with bushing 1.376 to	1.377" 34.950 to 34.976mm
Maximum Serviceable Limit	1.377" 34.976mm
Idler gear thrust washer shims	7,.009″ .127,.152,.178,.229mm
Idler gear end play	003″ .076mm
Oil Pump	
Positive displacement pump Gear	г Туре
Backlash, pump gear to crankshaft gear	o .008″ .051 to .203mm
Drive gear to pump body maximum clearance	0.010" .089 to .254mm
Pump gears to body radial maximum clearance	.008″ .051 to .203mm
Pump gears to pump cover maximum clearance	0.008" .038 to .203mm
Oil pressure	70 PSI 344.74 to 482.63 kPa
Relief valve spring:	
Free length	2.125" 53.975mm
Compressed 1.44" (36.58mm) 18 to 1	19 lbs. 8.16 to 8.62 kg
Cylinder Head	
Warpage	max152mm max.
walpage	
Intake Valve	
Tappet clearance (COLD and HOT)	012″ .305mm
Face angle	44° 44°
Face run-out	' max051mm max.
Length 6.339 to	6.364" 161.011 to 161.646mm
O.D. of stem	.3419" 8.659 to 8.684mm
Minimum Serviceable Limit	.3399″ 8.634mm
O.D. of head 1.599 to	1.609" 40.615 to 40.869mm
Seat angle	$\dots 45^{0}$ 45^{0}
Seat contact width	.1057" 1.788 to 2.685mm
Seat run-out	' max051mm max.

.356mm

8.608mm

45⁰

44⁰

Metric Value

.051mm max.

35.509 to 35.763mm

161.036 to 161.646mm

8.634 to 8.659mm

1.544 to 2.443mm .051mm max.

6.286 to 6.413mm

36.817 to 36.843mm

31.623 to 31.877mm

Exhaust Valve Tappet clearance (HOT and COLD) Face angle	
Face run-out	
O.D. of head	1.398 to 1.408"
O.D. of stem	
Minimum Serviceable Limit	
Length	6.340 to 6.364"
Insert seat angle	45º
Seat contact width	
Seat run-out	
Insert height	
O.D. of insert	1.4495 to 1.4505"
I.D. of insert	1.245 to 1.255″

Intake Valve Guides

Length	3.250″	82.550mm
O.D	.6575″	16.675 to 16.700mm
I.D. (installed and reamed)	.3439″	8.710 to 8.735mm
Maximum Serviceable Limit	.3449″	8.760mm
Protrusion above cylinder head	875″	22.225mm
Valve stem clearance in guide	.003″	.025 to .076mm
Maximum Serviceable Limit	004″	.102mm

Exhaust Valve Guides

Length	3.125''	79.375mm
O.D	.6575″	16.675 to 16.702mm
I.D. (installed and reamed)	.3439″	8.710 to 8.735mm
Maximum Serviceable Limit	.3449″	8.761mm
Protrusion above cylinder head	875″	22.225mm
Valve stem clearance in guide	o .004″	.051 to .102mm
Maximum Serviceable Limit	005″	.127mm

Valve Spring

۰ ۲

Free length 2.375"	60.325mm
Total coils	
Wire diameter	4.115mm
I.D	24.333 to 24.841mm
Compressed to 1.521" (38.633mm) (valve open) 110 to 118 lbs.	49.90 to 53.52 kg.
Compressed to 1.875" (47.625mm) (valve closed) 53 to 59 lbs.	24.04 to 26.76 kg.

Rocker Arm Assembly	U.S. Value	Metric Value
O.D. of shaft		15.799 to 15.824mm
I.D. of arm bore		15.850 to 15.900mm
Shaft spring: Free length	2.5″	63.500mm
Compressed to 1.75" (44.450mm)		3.40 to 3.86 kg.
Lubrication		
Shaft oil holes	Toward valve side of engine. Shaft cannot be rotated.	

SPECIAL TORQUES

SPECIAL TORQUES	
Engine	
Camshaft nut 80 to 90 ft. lbs.	109 to 122 Nm
Camshaft thrust plate mtg. bolts 17 to 20 ft. lbs.	23 to 27 Nm
Connecting rod nuts	61 to 68 Nm
Crankshaft main bearing bolts 90 to 100 ft. lbs.	122 to 136 Nm
Crankshaft pulley nut 125 to 135 ft. lbs.	169 to 183 Nm
Cylinder head bolts (Gr. 8,12 pt. hd.) 105 to 115 ft. lbs.	122 to 137 Nm
Cylinder head stud nuts $(1/2'')$	129 to 142 Nm
Cylinder head valve cover stud $(3/8'')$	48 to 57 Nm
Cylinder head valve cover stud $(1/2'')$	108 to 130 Nm
Cylinder head valve cover stud nuts $(3/8'')$ 4 to 6 ft. lbs.	5 to 8 Nm
Engine oil filter Install until gasket contacts filter head, then hand tighten 1/2 turn. Loosen filter approximately one full turn and retighten until gas- ket contact is made, then hand tig- hten an additional 1/2 to 3/4 turn.	
Exhaust manifold stud nut	34 to 41 Nm
Fan mounting bolts 17 to 20 ft. lbs.	23 to 27 Nm
Flywheel to crankshaft bolts	88 to 95 Nm
Fuel pump drive gear nut 40 to 50 ft. lbs.	54 to 68 Nm
Idler gear journal mounting bolts 35 to 42 ft. lbs.	47 to 57 Nm
Intake manifold stud nut 30 to 35 ft. lbs.	41 to 48 Nm
Oil pan capscrews (stamped steel) 10 to 12 ft. lbs.	14 to 16 Nm
Oil pan drain plug 29 to 31 ft. lbs.	39 to 42 Nm
Oil pan to seal retainer 15 to 20 ft. lbs.	20 to 27 Nm
Oil pump cover capscrews 9 to 11 ft. lbs.	12 to 15 Nm
Oil pump suction tube nut	129 to 142 Nm
Oil seal retainer bolts 12 to 15 ft. lbs.	16 to 20 Nm
Rocker arm bracket bolts 25 to 30 ft. lbs.	34 to 41 Nm
Timing gear cover mounting bolts 25 to 30 ft. lbs.	34 to 41 Nm
Water pump body bolts	48 to 57 Nm

GENERAL TORQUE SPECIFICATION TABLE (Revised 2-74) USE THE FOLLOWING TORQUES WHEN SPECIAL TORQUES ARE NOT GIVEN

NOTE: These values apply to fasteners as received from supplier, dry, or when lubricated with normal engine oil. They do not apply if special graphited or moly-disulphide greases or other extreme pressure lubricants are used. This applies to both UNF and UNC threads.

Bolt head ide marks as per NOTE: Manuf Marks Will Va Bolt Si Inches Mi	grade facturing ary			\rangle		6	7 7		\neg		<u>~</u> ~		7
Marks Will Va Bolt Si	ary		-		$\bigcirc \qquad \bigcirc \bigcirc \bigcirc \oslash \bigcirc \oslash \bigcirc \oslash $			$\bigcirc \bigcirc \bigcirc \bigcirc$				<u> </u>	<u>></u>
	ize	Torque			Torque				Tor	que			
Inches Mi		Foot P	ounds	Newton	-Meters	Foot F	ounds	Newtor	-Meters	Foot	Pounds	Newto	n-Meters
	lillimeters	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
1/4	6.35	5	6	6.8	8.13	9	11	12.2	14.9	12	15	16.3	20.3
5/16	7.94	10	12	13.6	16.3	17	20.5	23.1	27.8	24	29	32.5	39.3
3/8	9.53	20	23	27.1	31.2	35	42	47.5	57.0	45	54	61.0	73.2
7/16	11.11	30	35	40.7	47.4	54	64	73.2	86.8	70	84	94.9	113.9
1/2	12.70	45	52	61.0	70.5	80	96	108.5	130.2	110	132	149.2	179.0
9/16	14.29	65	75	88.1	101.6	110	132	149.2	179.0	160	192	217.0	260.4
5/8	15.88	95	105	128.7	142.3	150	180	203.4	244.1	220	264	298.3	358.0
3/4	19.05	150	185	203.3	250.7	270	324	366.1	439.3	380	456	515.3	618.3
7/8	22.23	160	200	216.8	271.0	400	480	542.4	650.9	600	720	813.6	976.3
1	25.40	250	300	338.8	406.5	580	696	786.5	943.8	900	1080	1220.4	1464.5
1-1/8	25.58					800	880	1084.8	1193.3	1280	1440	1735.7	1952.6
1-1/4	31.75					1120	1240	1518.7	1681.4	1820	2000	2467.9	2712.0
1-3/8	34.93					1460	1680	1979.8	2278.1	2380	2720	3227.3	3688.3
1-1/2	38.10					1940	2200	2630.6	2983.2	3160	3560	4285.0	4827.4

.

NOTE: CASE CORPORATION reserves the right to make improvements in design or changes in specifications at any time without incurring any obligation to install them on units previously sold.

Section 1050

MAINTENANCE AND LUBRICATION

C. E. Div. 9-66015

February 1976

FLUIDS AND LUBRICANTS

COMPONENTS	CAP U.S.	ACITY Metric	SPECIFICATIONS
Fuel tank	22 gallons	83 liters	Refer to Operator's Manual.
Engine crankcase Without filter change With filter change	6 quarts 7 quarts	5.7 liters 6.6 liters	Case HDM oil Engine oil, class CD, Above 32° F (0° C) SAE 30 10°-50° F (-12°-10° C) SAE 20W Below 32° F (0° C) SAE 10W
Hydraulic system (approx.) Loader/backhoe Loader only Loader/three point hitch Reservoir refill	30 gallons 21 gallons 25 gallons 17 gallons	113 liters 79 liters 94 liters 64 liters	Case TCH Fluid Alternate oil Engine oil, SD or CA Above 32° F (0° C) SAE 10W Below 32° F (0° C) SAE 5W Type C-2 transmission/hydraulic fluid such as Tenneco Hytrans Fluid.
Power shuttle and converter	8 quarts	7.6 liters	Case TCH Fluid.
Power steering system Reservoir refill	3 quarts 1 quart	2.8 liters 0.9 liter	Case TCH Fluid.
Mechanical shuttle	2 quarts	1.9 liters	Case TCH Fluid.
Transaxle	20 quarts	19 liters	Case FDL gear lubricant or lubri- cant meeting API-GL-4, specification Above 0° F (-18° C) SAE 90 Below 0° F (-18° C) SAE 80
Grease fittings	As req	uired	No. 2 moly disulfide grease.
Front wheel bearings	As req	uired	No. 2 moly disulfide grease.
Cooling system	21 quarts	19.8 liters	Mix ethylene glycol type antifreeze and water for lowest anticipated temperature.
Battery	As req	uired	Add colorless, odorless drinking water.
Brake master cylinders	As req	uired	DOT 3 brake fluid.

MAINTENANCE CHART

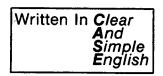
1. ..

NOTE: This chart is based on maximum service intervals. If operating in severe working conditions, service more often.

INTERVAL	SERVICE	INSTRUCTIONS
Run-in period. Every two hours until stable	Torque front and rear wheel bolts to 115-130 foot-pounds (157-176 N m).	
	Torque transaxle mounting bolts to 250-300 foot-pounds (339-407 N m).	
	Torque swing cylinder trunnion plate mount- ing bolts to 520-640 foot-pounds (732-867 N m).	
	Torque drive shaft cap screws to 20-24 foot- pounds (27-32 N m).	
Run-in period after first 20 hours	Change engine oil and filter.	
anter first 20 nours	Change hydraulic oil filter.	Section 4002
	Check fan belt tension.	Section 8007
Every 10 hours of	Grease loader pivot points.	
operation or daily, whichever occurs first	Grease backhoe pivot points.	
lirst	Grease extendable dipper, if so equipped.	
	Grease three point hitch, if so equipped.	
	Grease front axle pivot.	
	Grease front axle king pins.	
	Grease power shuttle bellcrank.	
	Check engine oil level.	
	Check hydraulic oil level.	
	Check radiator coolant level.	
	Clean air cleaner dust cup.	Section 2051
	Check power shuttle oil level (if so equipped).	Section 6202
	Check the machine and the ground under it for signs of leaks.	
	Check injection pump sediment bowl for water. If bowl has water, drain fuel tank, first stage fuel filter and sediment bowl.	

```
1050-4
```

INTERVAL	SERVICE	INSTRUCTIONS
Every 100 hours	Change engine oil.	
of operation	Grease rear axle bearings.	
	Grease seat post.	
	Grease brake pedals and shaft bearings on power shuttle machines.	
	Grease brake pedals and clutch shaft on mechanical shuttle machines.	
	Check tire condition and pressure.	Section 6229
	Check battery fluid level.	Section 8005
	Check transaxle oil level.	
	Check mechanical shuttle oil level.	
	Check power steering oil level.	
	Clean spark arresting muffler if so equipped.	Section 2051
Every 200 hours	Change engine oil filter.	Section 2555
of operation	Check fan belt tension.	Section 8007
Every 500 hours	Grease universal joints.	
of operation	Lubricate hydraulic pump shaft.	Section 4005
	Replace fuel filters.	Section 3010
	Check brake master cylinder fluid level.	
	Repack front wheel bearings.	Section 5021
	Inspect Roll-Over Protection Structure.	Section 9061
	Change hydraulic oil filter.	Section 4002
· · · · · · · · · · · · · · · · · · ·	Clean hydraulic reservoir breather.	Section 4002
Every 1000 hours of operation or	Change hydraulic oil.	Section 4002
once a year, whichever occurs	Change power shuttle oil, if so equipped.	Section 6202
first	Replace power steering oil filter.	Section 5005
	Change mechanical shuttle oil, if so equipped.	
	Change transaxle oil.	
	Clean transaxle breather.	


INTERVAL	SERVICE	INSTRUCTIONS
Every 2000 hours of operation or once a year, whichever occurs first	Drain, flush and refill cooling system.	Section 2050
As required	After a wheel has been removed and installed, check bolt torque every two hours until stable.	
	Service air filter element whenever restric- tion warning light remains on with engine running at full throttle.	Section 2051
	Change hydraulic oil filter whenever restric- tion warning light remains lit.	Section 4002

.

1051

TORQUE CHARTS

TABLE OF CONTENTS Torque Specifications - U.S. Hardware 1051			
Torque Specifications - Steel Hydraulic Fittings	1051-3		

Г

TORQUE SPECIFICATIONS - U.S. HARDWARE

Use the torques in this chart when special torques are not given. These torques apply to fasteners with both UNC and UNF threads as received from suppliers, dry, or when lubricated with engine oil. Not applicable if special graphites, moly-disulfide greases, or other extreme pressure lubricants are used.

Grade 5 Bolts, Nuts, and Studs			
	$\langle \cdot \rangle$	\bigcirc \leftarrow	\rangle
Size	Pound- Feet	Newton metres	Kilogram metres
1/4 in 6.4 mm	9-11	12-15	1.2-1.5
5/16 in 7.9 mm	17-21	23-28	2.4-2.9
3/8 in 9.5 mm	35-42	48-57	4.8-5.8
7/16 in 11.1 mm	54-64	73-87	7.5-8.8
1/2 in 12.7 mm	80-96	109-130	11.1-13.3
9/16 in 14.3 mm	110-132	149-179	15.2-18.2
5/8 in 15.9 mm	150-180	203-244	20.8-24.9
3/4 in 19.0 mm	270-324	366-439	37.3-44.8
7/8 in 22.2 mm	400-480	542-651	55.3-66.4
1.0 in 25.4 mm	580-696	787-944	80.2-96.2
1-1/8 in 28.6 mm	800-880	1085-1193	111-122
1-1/4 in 31.8 mm	1120-1240	1519-1681	155-171
1-3/8 in 34.9 mm	1460-1680	1980-2278	202-232
1-1/2 in 38.1 mm	1940-2200	2631-2983	268-304

Grade 8 Bolts, Nuts, and Studs			
() () () () () () () () () ()			
Size	Pound- Feet	Newton metres	Kilogram metres
1/4 in 6.4 mm	12-15	16-20	1.7-2.1
5/16 in 7.9 mm	24-29	33-39	3.3-4.0
3/8 in 9.5 mm	45-54	61-73	6.2-7.5
7/16 in 11.1 mm	70-84	95-114	9.7-11.6
1/2 in 12.7 mm	110-132	149-179	15.2-18.2
9/16 in 14.3 mm	160-192	217-260	22.1-26.5
5/8 in 15.9 mm	220-264	298-358	30.4-36.5
3/4 in 19.0 mm	380-456	515-618	52.5-63.0
7/8 in 22.2 mm	600-720	814-976	83.0-99.5
1.0 in 25.4 mm	900-1080	1220-1465	124-149
1-1/8 in 28.6 mm	.1280-1440	1736-1953	177-199
1-1/4 in 31.8 mm	1820-2000	2468-2712	252-277
1-3/8 in 34.9 mm	2380-2720-	3227-3688	329-376
1-1/2 in 38.1 mm	3160-3560	4285-4827	437-492

TORQUE SPECIFICATIONS - STEEL HYDRAULIC FITTINGS

Tube OD Hose ID	Thread Size	Pound- Feet	Newton metres	Kilogram metres
37 Degree Flare Fittings				
1/4 in 6.4 mm	7/16-20	6-12	8-16	0.8-1.7
5/16 in 7.9 mm	1/2-20	8-16	11-21	1.1-2.2
3/8 in 9.5 mm	9/16-18	10-25	14-33	1.4-3.5
1/2 in 12.7 mm	3/4-16	15-42	20-56	2.1-5.8
5/8 in 15.9 mm	7/8-14	25-58	34-78	3.5-8.0
3/4 in 19.0 mm	1-1/16-12	40-80	54-108	5.5-11.1
7/8 in 22.2 mm	1-3/16-12	60-100	81-135	8.3-13.9
1.0 in 25.4 mm	1-5/16-12	75-117	102-158	10.4-16.2
1-1/4 in 31.8 mm	1-5/8-12	125-165	169-223	17.3-22.8
1-1/2 in 38.1 mm	1-7/8-12	210-250	285-338	29.0-34.6

Split Flange Mounting Bolts			
Size	Pound- Feet	Newton metres	Kilogram metres
5/16-18	15-20	20-27	2.1-2.8
3/8-16	20-25	26-33	2.8-3.5
7/16-14	35-45	47-61	4.7-6.2
1/2-13	55-65	74-88	7.6-9.0
5/8-11	140-150	190-203	19.4-20.7

Tube OD Hose ID	Thread Size		Newton metres	Kilogram metres	
Str	Straight Threads with O-ring				
1/4 in 6.4 mm	7/16-20	12-19	16-25	1.7-2.6	
5/16 in 7.9 mm	1/2-20	16-25	22-33	2.2-3.5	
3/8 in 9.5 mm	9/16-18	25-40	34-54	3.5-5.5	
1/2 in 12.7 mm	3/4-16	42-67	57-90	5.8-9.3	
5/8 in 15.9 mm	7/8-14	58-92	79-124	8.0-12.7	
3/4 in 19.0 mm	1-1/16-12	80-128	108-174	11.1-17.8	
7/8 in 22.2 mm	1-3/16-12	100-160	136-216	13.8-22.1	
1.0 in 25.4 mm	1-5/16-12	117-187	159-253	16.2-25.9	
1-1/4 in 31.8 mm	1-5/8-12	165-264	224-357	22.8-36.5	
1-1/2 in 38.1 mm	1-7/8-12	250-400	339-542	34.6-55.3	

811361A

Section 1052

NOISE CONTROL

CASE CORPORATION

C. E. Div. 9-66015

February 1976

PRINTED IN U.S.A.

NOISE PROTECTION

J I Case provides noise abatement kits that may be factory or field installed. Each kit is made up of an acoustical foam material. This material must be kept clean and intact to maintain the proper level of noise protection.

Cleaning

If the padding becomes contaminated with surface dust or dirt, hose down with water. Steam clean parts that have become contaminated with oil or grease. Squeeze out the excess water.

If the padding is saturated with oil or grease and does not clean up, replace the contaminated part.

Replacement

WARNING: Be sure the area has good ventilation before applying the adhesive. 39-10

When installing padding make sure the metal surfaces are clean of all oil, grease, excessive rust and traces of old material. It is very important that the new piece cover the same area as the old one.

Use a brand name contact cement according to manufacturer's instructions to hold padding in place.

Checking Noise Protection

The laws of some cities, states or provinces may require that your machine be checked and certified for a maximum noise level. Be sure to check with local authorities to determine what the requirements are.

Listed below are checks that must be performed to insure continuing noise protection.

- 1. Check that all exterior parts and sheet metal fasteners are tight. All rattles close to the operator's area must be eliminated.
- 2. Check that all sealing and barrier materials are whole and intact. A small hole can admit a large amount of noise.
- 3. Check noise isolators such as engine mounts, rubber shock mounts, hydraulic tube isolators, etc. Replace if defective.
- 4. Check that the full throttle no load engine speed is checked with an accurate tachometer. The engine speed must be within the limits as listed in Section 1010.
- 5. Check the full range of engine speed for resonance (loud, undampened vibration). To check, increase the engine speed from low idle to full throttle slowly. If excessive resonance is found, eliminate the vibration of the suspected part.

NOTE: For your general information, see the SAE recommended practice on sound levels and measurements. Refer to SAE J919a, J87 and J88 in the SAE Handbook.

Section 2001

ENGINE DIAGNOSIS 188 and 207 Diesel Engines

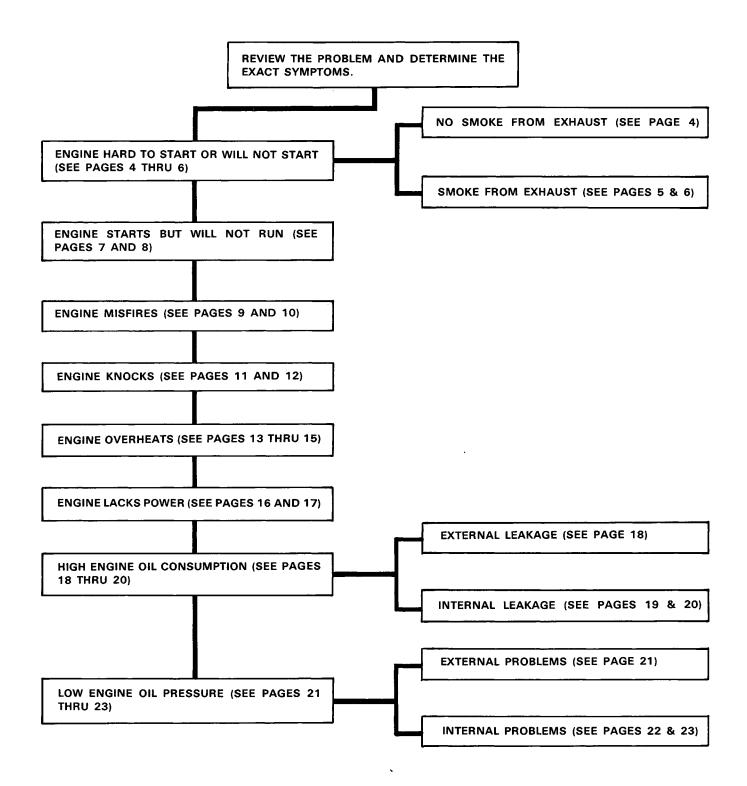
GENERAL INFORMATION

Before making any repairs or adjustments on an engine, a mechanic or technician must properly diagnose the trouble.

Locating the trouble and repairing it is only part of the job, a technician must find and eliminate the cause of the trouble as well. Too many repairs are made with no thought to removing the causes that made the repair necessary.

For any engine to start or perform properly, three main requirements must be present:

1. FUEL 2. COMPRESSION 3. COMBUSTION


When any of these requirements are not present or limited by some mechanical reason, the engine will not start and will fail to operate properly throughout the power range.

FUEL. Fuel system problems can be present anywhere from the fuel tank, through the filters and injection pump as well as the injectors. Correct injection pump timing is important in the overall fuel system performance. COMPRESSION. Compression on an engine is related to the "breathing function". Proper compression is affected by the air cleaner condition, muffler restriction, valve condition and operation including proper valve adjustment, cylinder head gaskets, condition of sleeves, rings, pistons, camshaft, and camshaft timing.

COMBUSTION. Combustion is the result of adequate compression to develop enough heat in the air charge on the compression stroke to fire the fuel being injected into the engine cylinders. Proper spray pattern and atomization of the fuel by the injector is very important. Timing the fuel injection pump to the engine to a precise degree BTDC is a vital requirement for proper combustion.

The engine diagnosis contained in the following pages covers many trouble symptoms, the causes, and what will be necessary to repair or eliminate the problem. Under each symptom are listed the most common and reoccuring problems progessing to the not so common problems. Locate your problem symptom in the diagnosis chart and refer to the pages listed for the probable causes and remedies.

ENGINE DIAGNOSIS CHART

ENGINE HARD TO START OR WILL NOT START

No Smoke From Exhaust

1. Fuel Shut-Off Not Open Completely.

Improper cable adjustment, damaged cable, cable slipping in clamps, misadjusted or inoperative solenoid will not completely return fuel shut-off lever to open position. Check lever to be sure it is opening completely. A partially opened lever limits the amount of fuel to the injection pump and results in low engine horsepower.

2. Final Air Filter Plugged

A dirty filter will cause rich fuel mixture and low engine power. Check filter restriction indicator and service final air filter if required.

3. Slow Cranking Speed

Starter must crank engine 200 to 300 RPM in order to ignite the diesel fuel. Check engine RPM while cranking. If cranking is slow, check starter amperage draw to help determine the following defective areas: batteries, cables, solenoid and starting motor.

Slow cranking speed can be caused by the following internal and external engine defects: scuffing and scoring of pistons and sleeves, improper crankshaft or camshaft end play, defective rod or crank bearings, oil pump, water pump, hydraulic pump or air compressor.

4. Fuel Supply Shut-Off or No Fuel

Check that fuel tank shut-off valve is open. Check fuel supply in tank.

5. Air In Fuel System

Bleed fuel system until fuel flows steadily with no bubbles. Check for air leaks at fittings between tank and fuel pump.

6. Camshaft Damaged

A sheared key in the cam drive gear or a broken cam shaft will throw valve timing out of sequence affecting engine operation. Remove cylinder head cover and check valve timing in reference to crankshaft timing marks with a dial indicator.

7. Fuel Injection Nozzle Not Seated In Head.

A nozzle that is not seated in the cylinder head will let compression leak by and not produce enough heat to fire the injected fuel. Check for damaged nozzle gasket or seals, loose nozzle, or broken stud.

8. Fuel Line Plugged

A fuel line plugged with dirt will not let fuel through to the injection pump. Remove line at fuel filters and check for fuel flow through line.

9. Clogged Fuel Filter

Check and service fuel filters.

10. Wrong Fuel or Contaminated Fuel

Wrong fuel (low centane) or contaminated fuel (water and dirt) can cause the engine not to run or to have pre-combustion, causing serious damage to the engine. Drain fuel tank and refill with correct fuel.

11. Sticking Rack Control

A sticking rack control will not let the fuel injection pump accept any fuel.

12. Piston Rings Worn

As piston rings become worn, they lose tension and ability to seal and wipe lubrication oil off cylinder walls. Take a compression test to determine piston ring condition. If readings are low, squirt a small amount of oil into the cylinder and retest. If compression comes up because the oil helps the rings seal, it will be necessary to install new piston rings and possibly sleeve and pistons.

13. Injection Pump Malfunction

A malfunctioning injection pump will usually under-fuel the engine. Adjust or replace the injection pump. A common cause is a sheared key on the injection pump drive, preventing fuel to be delivered to injectors. Adjust or replace the injection pump.

ENGINE HARD TO START OR WILL NOT START Smoke From Exhaust

1. Slow Cranking Speed

Starter must crank engine 200 to 300 RPM in order to ignite the diesel fuel. Check engine RPM while cranking. If cranking is slow, check starter amperage draw to help determine the following problem areas: batteries, cables, solenoid, and starting motor.

Slow cranking speed can be caused by the following internal and external engine defects: scuffing and scoring of pistons and sleeves, improper crankshaft or camshaft end play defective rod or crank bearings, oil pump, water pump, hydraulic pump or air compressor.

2. Fuel Shut-Off Not Open Completely.

Improper cable adjustment, damaged cable, cable slipping in clamps, misadjusted or inoperative solenoid will not completely return fuel shut-off lever to open position. Check lever to be sure it is opening completely. A partially opened lever limits the amount of fuel to the injection pump and results in low engine horsepower.

3. Low Compression

Low compression on several cylinders, makes the engine hard to start and rough running, also does not generate enough heat to properly fire on all cylinders. Make a compression test on the engine.

4. Final Air Filter Plugged

A dirty filter will cause rich fuel mixtures and low engine power. Check filter restriction indicator and service final air filter if required.

5. Fuel Injection Nozzles Malfunctioning

Low cracking pressure, improper spray pattern, or plugged spray orifice will affect proper combustion in engine cylinders. Remove and test the fuel injection nozzles.

6. Engine Timing Incorrect

Combustion will not occur in the cylinder at the correct moment (degrees BTDC) if the engine timing is incorrect. This can cause precombustion and serious damage to the engine. Check for proper engine timing.

7. Piston Rings Worn

As piston rings become worn, they lose tension and ability to seal and wipe lubricating oil off cylinder walls. Take a compression test to determine piston ring condition. If readings are low, squirt a small amount of oil into the cylinder and retest. If compression comes up because the oil helps the rings seal, it will be necessary to install new piston rings and possibly sleeve and pistons.

8. Valve Push Rods Bent

Bent push rods will affect valve operation and not allow cylinders to get a full charge of fuel and air, or not exhaust properly. This can usually be distinguished by excessive valve tappet noise. Remove cylinder cover and check for bent push rods.

9. Clogged Fuel Filter

Check and service fuel filters.

10. Fuel Injection Nozzle Not Seated In Head

A nozzle that is not seated in the cylinder head will let compression leak by and not produce enough heat to fire the injected fuel. Check for damaged nozzle gasket or seals, loose nozzle, or broken stud.

11. Tune-up Specifications Wrong

Check engine and unit serial number plates for correct specifications when performing engine tune-up.

12. Piston and Sleeves Scuffed and Scored

Scuffing starts as a very small surface disturbance of torn out metal particle. This helps break down lubrication which increases heat and spreads the scuffing to adjacent areas. Scuffing and scoring are caused by malfunctioning of the lubrication system or cooling system, incorrect timing, pre-combustion, lugging or overloading, improperly fitting parts and improper break-in procedure. Remove piston assemblies and inspect.

ENGINE HARD TO START OR WILL NOT START Smoke From Exhaust (Cont'd)

13. Cylinder Head Gasket Blown

A blown cylinder head gasket will cause one or two cylinders to loose power and cause an engine to miss. Compression leaking into the water system can also cause the cooling system pressure to rise and blow engine coolant out the radiator overflow. Take a compression test to help determine a defective head gasket, or remove radiator cap, run engine and check for gas bubbles rising in coolant at radiator opening.

14. Piston Ring Installation Faulty or Broken Rings

At times, piston rings are installed wrong, upside down, wrong size, overlapping of expanders, or expanders are cut on three piece oil rings. Be sure to carefully read the instructions before installing piston rings. Damaged rings can cause scoring of the piston sleeves and cause the engine to use oil.

15. Valves Sticking

Sticking valves can be caused by improper replacement of valve guides, no lubrication, rust vapors, bent valves, or carbon. A sticking valve will cause an engine miss and the valve could also hit the piston causing internal damage.

16.Wrong Fuel or Contaminated Fuel

Wrong fuel (low centane) or contaminated fuel (water and dirt) can cause the engine not to run or to have pre-combustion, causing serious damage to the engine. Drain fuel tank and refill with correct fuel.

17. Injection Pump Malfunction

A malfunctioning injection pump will usually under-fuel the engine. A common cause is a sheared key on the injection pump drive, preventing fuel to be delivered to injectors. Adjust or replace the injection pump or parts as required.

18. Fuel Injection Line Cracked.

A cracked, chaffed or damaged fuel injector line will allow the fuel to escape externally and not inject fuel into the cylinder. This will cause an engine miss and low horsepower. Leaking fuel from a damaged injector line can easily be seen.

ENGINE STARTS BUT WILL NOT RUN

1. Fuel Shut-Off Not Open Completely

Improper cable adjustment, damaged cable, cable slipping in clamps, misadjusted or inoperative solenoid will not completely return fuel shut-off lever to open position. Check lever to be sure it is opening completely. A partially opened lever limits the amount of fuel to the injection pump and results in low engine horsepower.

2. Final Air Filter Plugged

A dirty filter will cause rich fuel mixtures and low engine power. Check filter restriction indicator and service final air filter if required.

3. Air In Fuel System

Bleed fuel system until fuel flows steady with no air bubbles. Check for air leaks at fittings between fuel tank and injection pump.

4. Low Fuel Supply

Check fuel supply in tank and refill if necessary.

5. Injection Pump Rack Control Sticking

A sticking rack control will not allow the fuel injection pump to accept any fuel.

6. Low Compression

Low compression on several cylinders, makes the engine hard to start and rough running, also does not generate enough heat to properly fire on all cylinders. Make a compression test on the engine.

7. Valve Push Rods Bent

Bent push rods will affect valve operation and not allow cylinders to get a full charge of fuel and air, or not exhaust properly. This can usually be distinguished by excessive valve tappet noise. Remove cylinder cover and check for bent push rods.

8. Camshaft Damaged

A sheared key in the cam drive gear or a broken camshaft will throw valve timing out of sequence, affecting engine operation. Remove cylinder cover and check valve timing in reference to crankshaft timing marks with a dial indicator.

9. Wrong Fuel or Contaminated Fuel

Wrong fuel (low centane) or contaminated fuel (water and dirt) can cause the engine not to run or to have pre-combustion, causing serious damage to the engine. Drain fuel tank and refill with correct fuel.

10.Clogged Fuel Filter

Check and service fuel filters.

11. Fuel Injection Nozzles Malfunctioning

Low cracking pressure, improper spray pattern, or plugged spray orifice will affect proper combustion in engine cylinders. Remove and test the fuel injection nozzles.

12. Cylinder Head Gasket Blown

A blown cylinder head gasket will cause one or two cylinders to loose power and cause an engine to miss. Compression leaking into the water system can also cause the cooling system pressure to rise and blow engine coolant out the radiator overflow. Take a compression test to help determine a defective head gasket, or remove radiator cap, run engine and check for gas bubbles rising in coolant at radiator opening.

13. Piston Rings Worn

As piston rings become worn, they lose tension and ability to seal and wipe lubricating oil off cylinder walls. Take a compression test to determine piston ring condition. If readings are low, squirt a small amount of oil into the cylinder and retest. If compression comes up because the oil helps the rings seal, it will be necessary to install new piston rings and possibly sleeve and pistons.

ENGINE STARTS BUT WILL NOT RUN (Cont'd)

14.Valves Sticking

Sticking valves can be caused by improper replacement of valve guides, no lubrication, rust vapors, bent valves, or carbon. A sticking valve will cause an engine miss and the valve could also hit the piston causing internal damage.

15. Injection Pump Malfunction

A malfunctioning injection pump will usually under-fuel the engine. A common cause is a sheared key on the injection pump drive, preventing fuel to be delivered to injectors. Adjust or replace the injection pump or parts as required.

16. Fuel Injector Line Cracked

A cracked, chaffed or damaged fuel injector line will allow the fuel to escape externally and not inject fuel into the cylinder. This will cause an engine miss and low horsepower. Leaking fuel from a damaged injector line can easily be seen.

17. Injection Pump Timing Incorrect

A fuel injection pump timed at wrong degrees, wrong stroke, or marks moved on pulley, will inject fuel into the cylinders at the wrong time, causing rough running, pre-combustion, low horsepower and other damage to the engine. Check for proper pump timing.

ENGINE MISFIRES

Low and High RPM

1.Wrong Fuel or Contaminated Fuel

Wrong fuel (low centane) or contaminated fuel (water and dirt) can cause the engine not to run or to have pre-combustion, causing serious damage to the engine. Drain fuel tank and refill with correct fuel.

2. Valve Push Rods Bent

Bent push rods will affect valve operation and not allow cylinders to get a full charge of fuel and air, or not exhaust properly. This can usually be distinguished by excessive valve tappet noise. Remove cylinder cover and check for bent push rods.

3. Fuel Injection Nozzles Malfunctioning

Low cracking pressure, improper spray pattern or plugged orifice will affect proper combustion in engine cylinders. Isolate faulty injector nozzle and remove.

4. Fuel Injection Nozzle Not Seated in Head

A fuel injection nozzle that is not seated in the cylinder head will let compression leak by and the cylinder does not produce enough heat to fire the injected diesel fuel. A damaged nozzle gasket or seals, loose nozzle, or broken stud can cause the nozzle not to be seated correctly.

5. Cylinder Head Gasket Blown

A blown cylinder head gasket will cause one or two cylinders to loose power and cause an engine to miss. Compression leaking into the water system can also cause the cooling system pressure to rise and blow engine coolant out the radiator overflow. Take a compression test to help determine a defective head gasket, or remove radiator cap, run engine and check for gas bubbles rising in coolant at radiator opening.

6. Low Compression

Low compression on several cylinders, makes the engine hard to start and rough running, also does not generate enough heat to properly fire on all cylinders. Make a compression test on the engine.

7. Fuel Injection Line Cracked

A cracked, chaffed or damaged fuel injector line will allow fuel to escape externally and inject fuel into the cylinder. This will cause an engine miss and low horsepower. Leaking fuel from a damaged injector line can easily be seen.

8. Injection Pump Malfunction.

A malfunctioning injection pump will usually under-fuel the engine. A common cause is a sheared key on the injection pump drive, preventing fuel to be delivered to injectors. Adjust or replace the injection pump or parts as required.

9. Injection Pump Timing Incorrect

A fuel injection pump timed at wrong degrees, wrong stroke, or marks moved on pulley, will inject fuel into the cylinders at the wrong time, causing rough running, pre-combustion, low horsepower and other damage to the engine. Check for proper pump timing.

10. Intake Manifold Gasket Damaged

A damaged intake manifold gasket can reduce the manifold pressure and cause an insufficient air-fuel mixture in the cylinders and result in low power.

11. Cylinder Head or Sleeve Cracked

A cracked head or sleeve will usually let engine coolant into the engine. This will cause an engine miss or pressure rise in the cooling system depending on how bad the leak is. Low coolant level, oil level, engine missing, and blowing water out the exhaust are evidence that coolant is getting into the engine combustion chambers.

ENGINE MISFIRES

Low and High RPM (Cont'd)

12. Valves Damaged

Damaged valves are caused by wear, improper grinding, hitting the pistons, wrong adjustment, loose seat, or broken valve spring. Defective valves can usually be heard through the intake or exhaust manifold. A low reading compression test usually indicates defective valves.

13. Valve Spring Worn (High RPM)

Weak valve springs will allow the valves to float at high speed. Broken valve springs will not close valve completely and valve could hit the piston doing internal engine damage. Always check and test valve springs when doing a valve job. Damping coils on spring should be assembled against the cylinder head.

14. Operating Temperature Low

The engine was designed for and will only develop full horsepower within its correct operating temperature range. Low operating temperature can result from a malfunctioning thermostat. Do not remove thermostat during the summer. Maintain 50% of permanent antifreeze all year for more efficient operation.

15. Engine Pre-combustion

Pre-combustion is the igniting of the fuel before the normal compression point occurs. This can cause severe knocking and engine power loss. High temperature and pressure from pre-combustion will cause other serious internal damage to the engine. The following are causes of pre-combustion:

- A. Valves operating at higher than normal temperature because of excessive guide clearance or improper seal with valve seats.
- B. Hot spots caused by an inefficient or damaged cooling system.
- C. Injection nozzles set at incorrect cracking pressure.
- D. Sharp edges in combustion chamber.
- E. Timing incorrect.
- F. Excessive lugging of engine.
- G. Defective injection pump.
- H. Wrong or contaminated fuel.

16. Valves Sticking

Sticking valves can be caused by improper replacement of valve guides, no lubrication, rust vapors, bent valves or carbon. A sticking valve will cause an engine miss and the valve could also hit the piston causing internal damage.

17. Bent Connecting Rod

A bent connecting rod will cause piston slap from scoring due to misalignment. The engine will run rough because of incomplete combustion and emit white exhaust smoke from the bad cylinder. Remove engine oil pan and inspect connecting rods for alignment. A comparison of piston heights at Top Dead Center with cylinder head removed may quickly indicate a bent rod condition. A difference of .020 inch in connecting rod can cause a noticeable miss at low RPM and cold engine conditions.

18. Tune-up Specifications Incorrect

Check engine and unit serial number plates for correct specifications when performing engine tune-up.

ENGINE KNOCKS

Low and High RPM

1. Engine Timing Incorrect

Combustion will not occur in the cylinder at the correct moment (degrees BTDC) if the engine timing is incorrect. This can cause precombustion and serious damage to the engine. Check for proper engine timing.

2. Flywheel Loose (Low RPM)

A loose flywheel will chuck or pound at low speed making the engine sound like it has a loose connecting rod. As speed increases, the knock will go away. Replace flywheel if badly worn.

3. Engine Pre-combustion

Pre-combustion is the igniting of the fuel before the normal compression point occurs. This can cause severe knocking and engine power loss. High temperature and pressure from pre-combustion will cause other serious internal damage to the engine. The following are causes of pre-combustion:

- A. Valves operating at higher than normal temperature because of excessive guide clearance or improper seal with valve seats.
- B. Hot spots caused by an inefficient or damaged cooling system.
- C. Injection nozzles set at incorrect cracking pressure.
- D. Sharp edges in combustion chamber.
- E. Timing incorrect.
- F. Excessive lugging of engine.
- G. Defective injection pump.
- H. Wrong or contaminated fuel.

4. Rod Bearing Worn

A rod bearing going bad will have a sharp metallic sound which will increase as RPM increases. When the cylinder with the bad knock is grounded by cracking the injector line, the knock will stop or decrease considerably. Remove the engine oil pan and check rods with plasti-gauge.

5. Main Bearing Worn

A worn main bearing will have a thudding sound and increased engine vibration. Both symptoms will increase as engine speed increases. By grounding out (cracking injector line) the problem cylinder, the thudding sound will stop or decrease but the vibration will remain. Remove engine oil pan and check main bearing clearance will plasti-gauge. Also, low oil pressure can be the result of worn main bearings and excessive oil clearance.

6. Piston and Sleeves Scuffed and Scored

Scuffing starts as a very small surface disturbance of torn out metal particles. This helps break down lubrication which increases heat and spreads the scuffing to adjacent areas. Scuffing and scoring are caused by malfunctioning of the lubrication system or cooling system, incorrect timing, pre-combustion, lugging or overloading, improperly fitting parts and improper break-in procedure. Remove piston assemblies and inspect.

7. Piston Ring Installation Faulty or Broken Rings

At times, piston rings are installed wrong, upside down, wrong size, overlapping of expanders, or expanders are cut on three piece oil rings. Be sure to carefully read the instructions before installing piston rings. Damaged rings can cause scoring of the piston sleeves and cause the engine to use oil. This as a preview PDF file from **best-manuals.com**

Download full PDF manual at best-manuals.com