
Please cut where indicated and insert the label into the plastic pocket on the spine of the binder.

TR96, TR97, TR98 COMBINE REPAIR MANUAL CONTENTS

SECTION 0 - GENERAL AND SAFETY INFORMATION SECTION 1 - ELECTRICAL SYSTEM SECTION 2- HYDRAULIC SYSTEM SECTION 3- MONITOR SYSTEM **SECTION 4- SEPARATOR CLUTCH SECTION 5- ENGINE PTO** SECTION 6- FEEDER **SECTION 7- ROTOR DRIVE SECTION 8- ROTORS SECTION 9- ROTOR GEARBOXES SECTION 10 - CONCAVES SECTION 11 - SEPARATOR GRATES** SECTION 12 - DISCHARGE BEATER AND GRATE **SECTION 13 - CLEANING FAN SECTION 14 - CLEANING SHOE** SECTION 15 - CLEAN GRAIN AND FILLING SYSTEM SECTION 16 - TAILINGS SYSTEM SECTION 17 - UNLOADING SYSTEM **SECTION 18 - MAIN SHAFT SECTION 19 - HYDROSTATIC SYSTEM SECTION 20 - TRANSMISSION SECTION 21 - POWERED REAR AXLE SECTION 22 - FINAL DRIVES SECTION 23 - BRAKES SECTION 24 - CYLINDERS**

TR®96, TR®97, TR®98 COMBINE REPAIR MANUAL

INTRODUCTION

This repair manual provides you with the technical information needed to properly service the TR96, TR97, and TR98 combines. By using this repair manual in addition to the operator's manual supplied with the combine, you should be able to correctly service and maintain the combine.

On New Holland equipment, left and right are determined by standing behind the unit, looking in the direction of travel.

This manual describes the procedures of removal, disassembly, reassembly, etc., that have been found to be the easiest and least time-consuming. There may be several other ways of completing the same job, but it has been established that the described methods are best. Modifications to these procedures are your own decision.

Certain hardware on the combine must be tightened to particular torque specifications. If there are no specific torque specifications for the hardware, tighten to the torque listed in the torque charts in this section of the manual.

CAUTION: PICTURES IN THIS MANUAL MAY SHOW PROTECTIVE SHIELDING OPEN OR REMOVED TO BETTER ILLUSTRATE A PARTICULAR FEATURE OR ADJUSTMENT.

BE CERTAIN, HOWEVER, TO CLOSE OR REPLACE ALL SHIELDING BEFORE OPERATING THE MACHINE.

IMPROVEMENTS

New Holland North America, Inc. is continually striving to improve its products. We reserve the right to make improvements or changes when it becomes practical and possible to do so, without incurring any obligation to make changes or additions to the equipment sold previously.

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

PRECAUTIONARY STATEMENTS

PERSONAL SAFETY

Throughout this manual and on machine decals, you will find precautionary statements ("CAUTION", "WARNING", and "DANGER") followed by specific instructions. These precautions are intended for the personal safety of you and those working with you. Please take the time to read them.

CAUTION: THE WORD "CAUTION" IS USED WHERE A SAFE BEHAVIORAL PRACTICE ACCORDING TO OPERATING AND MAINTENANCE INSTRUCTIONS AND COMMON SAFETY PRACTICES WILL PROTECT THE OPERATOR AND OTHERS FROM ACCIDENT INVOLVEMENT.

WARNING: THE WORD "WARNING" DENOTES A POTENTIAL OR HIDDEN HAZARD WHICH HAS A POTENTIAL FOR SERIOUS INJURY. IT IS USED TO WARN OPERATORS AND OTHERS TO EXERCISE EVERY APPROPRIATE MEANS TO AVOID A SURPRISE INVOLVEMENT WITH MACHINERY.

DANGER: THE WORD "DANGER" DENOTES A FORBIDDEN PRACTICE IN CONNECTION WITH A SERIOUS HAZARD.

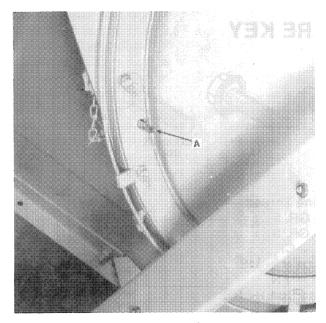
FAILURE TO FOLLOW THE "CAUTION", "WARNING", AND "DANGER" INSTRUCTIONS MAY RESULT IN SERIOUS BODILY INJURY OR DEATH.

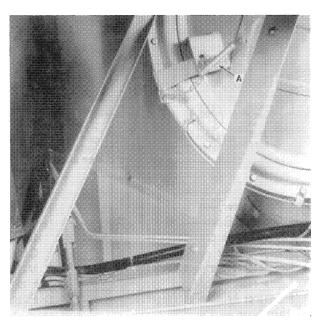
MACHINE SAFETY

Additional precautionary statements ("ATTENTION" and "IMPORTANT") are followed by specific instructions. These statements are intended for machine safety.

ATTENTION: The word "ATTENTION" is used to warn the operator of potential machine damage if a certain procedure is not followed.

IMPORTANT: The word "*IMPORTANT*" is used to inform the reader of something he needs to know to prevent minor machine damage if a certain procedure is not followed.




SAFETY PRECAUTIONS

- 1. DO NOT ATTEMPT TO LUBRICATE OR MAKE ANY ADJUSTMENTS ON THE COMBINE WHILE IT IS IN MOTION OR WHILE THE ENGINE IS RUNNING.
- 2. ALLOW ONLY THE OPERATOR ON THE COMBINE. DO NOT PERMIT ANYONE TO RIDE ON THE COMBINE.
- 3. USE THE HANDRAIL WHEN GETTING ON OR OFF THE COMBINE.
- 4. BE ESPECIALLY CAREFUL WHEN OPERATING ON HILLSIDES, AS THE COMBINE COULD TIP SIDEWAYS IF IT STRIKES A HOLE, DITCH OR OTHER IRREGULARITY. KEEP THE COMBINE IN GEAR WHEN GOING DOWNHILL.
- 5. KEEP ALL SHIELDS IN PLACE WHILE THE COMBINE IS IN OPERATION.
- 6. HAVE A FIRE EXTINGUISHER HANDY. IT IS A GOOD IDEA TO MOUNT ONE ON THE OPERATOR'S PLATFORM.
- 7. KEEP THE ENGINE AREA CLEAN OF DUST, CHAFF AND STRAW TO PREVENT THE POSSIBILITY OF FIRES.
- 8. DO NOT WORK UNDER THE HEAD WHEN IT IS IN THE RAISED POSITION UNLESS IT IS PROPERLY BLOCKED OR THE CYLINDER STOP, A, FIGURE 0-1, IS DOWN AND LOCKED.

FIGURE 0-1

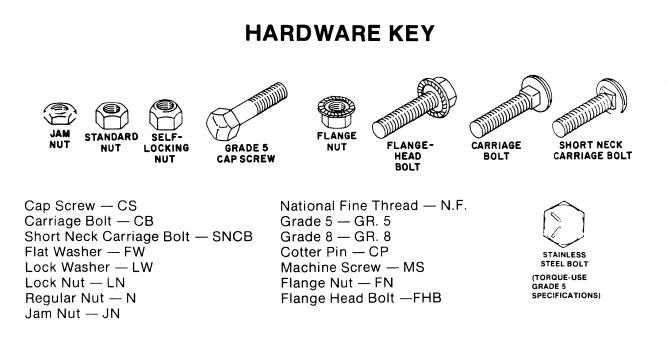


FIGURE 0-2

FIGURE 0 -3

- 9. BE SURE THE PARKING BRAKE IS ENGAGED BEFORE LEAVING THE OPERATOR CONTROL AREA.
- 10. BE SURE THE HYDROSTATIC SPEED CONTROL LEVER IS IN NEUTRAL BEFORE STARTING THE ENGINE.
- 11. REPLACE BADLY FRAYED BELTS BEFORE THEY BREAK.
- 12. WHEN DRIVING THE COMBINE ON A ROAD OR HIGHWAY, USE ACCESSORY LIGHTS OR DEVICES PROVIDED FOR ADEQUATE WARNING TO THE OPERATORS OF OTHER VEHICLES. CHECK YOUR LOCAL GOVERNMENT REGULATIONS CONCERNING THE USE OF WARNING DEVICES.
- 13. KEEP CHILDREN AWAY FROM AND OFF THE COMBINE AT ALL TIMES.
- 14. THE COMBINE SHOULD ALWAYS BE EQUIPPED WITH SUFFICIENT REAR AXLE WEIGHT FOR SAFE OPERATION. UNDER SOME FIELD CONDITIONS, MORE WEIGHT MAY BE REQUIRED AT THE REAR AXLE FOR SAFE STABILITY. REFER TO THE GRAIN HEAD AND/OR CORN HEAD MANUAL FOR ADDITIONAL INFORMATION.
- 15. FOLD THE UNLOADING AUGER BACK AGAINST THE SIDE OF THE COMBINE AFTER UNLOADING THE GRAIN TANK OR WHEN TRANSPORTING THE COMBINE.
- 16. WHEN THE UNLOADING AUGER IS IN ITS OPERATING POSITION, INSTALL THE CYLINDER STOP, A, FIGURE 0-2, OR A, FIGURE 0-3, BEFORE WORKING ON OR SERVICING THE COMBINE.
- 17. REFUEL THE COMBINE ONLY WHEN THE ENGINE HAS BEEN SHUT OFF. DO NOT SMOKE OR HAVE ANY OPEN FLAME WHEN REFUELING.

To CONVERT NEWTON-METERS to FOOT POUNDS, multiply the number of Newton-Meters by 0.737.

Example: 36 Newton-Meters x 0.737 = 26.532 ft. lbs.

To CONVERT FOOT POUNDS to NEWTON-METERS, multiply foot pounds by 1.355. Example: 27 ft. lbs. x 1.355 = 36.585 Newton-Meters

MINIMUM HARDWARE TIGHTENING TORQUES IN FOOT POUNDS (NEWTON-METRES) FOR NORMAL ASSEMBLY APPLICATIONS

	SAE GR	ADE 2	SAE GR	ADE 5	SAE GR	ADE 8	LOCK	NUTS	
NOMINAL SIZE	UNPLATED or PLATED SILVER	PLATED W/ZnCr GOLD	UNPLATED or PLATED SILVER	PLATED W/ZnCr GOLD	UNPLATED or PLATED SILVER	PLATED W/ZnCr GOLD	GR.B w/GR5 BOLT	GR.C w/GR8 BOLT	NOMINAL SIZE
1/4	55*(6.2)	72*(8.1)	86*(9.7)	112* (13)	121* (14)	157* (18)	61*(6.9)	86*(9.8)	1/4
5/16	115* (13)	149* (17)	178* (20)	229* (26)	250* (28)	324* (37)	125* (14)	176* (20)	5/16
3/8	17 (23)	22 (30)	26 (35)	34 (46)	37 (50)	48 (65)	19 (26)	26 (35)	3/8
7/16	27 (37)	35 (47)	42 (57)	54 (73)	59 (80)	77 (104)	30 (41)	42 (57)	7/16
1/2	42 (57)	54 (73)	64 (87)	83 (113)	91 (123)	117 (159)	45 (61)	64 (88)	1/2
9/16	60 (81)	77 (104)	92 (125)	120 (163)	130 (176)	169 (229)	65 (88)	92 (125)	9/16
5/8	83 (112)	107 (145)	128 (174)	165 (224)	180 (244)	233 (316)	90 (122)	127 (172)	5/8
3/4	146 (198)	189 (256)	226 (306)	293 (397)	319 (432)	413 (560)	160 (217)	226 (306)	3/4
7/8	142 (193)	183 (248)	365 (495)	473 (641)	515 (698)	667 (904)	258 (350)	364 (494)	7/8
1	213 (289)	275 (373)	547 (742)	708 (960)	773(1048)	1000(1356)	386 (523)	545 (739)	1

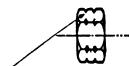
INCH HARDWARE AND LOCKNUTS

NOTE: Torque values shown with * are inch pounds.

IDENTIFICATION

CAP SCREWS AND CARRIAGE BOLTS

GRADE 2 SAE



SAE GRADE 8 HEX NUTS

REGULAR NUTS

SAE GRADE 5 HEX NUTS

LOCKNUTS

GRADE IDENTIFICATION

GRADE A NO NOTCHES

GRADE B ONE CIRCUMFERENTIAL NOTCH

GRADE C TWO CIRCUMFERENTIAL NOTCHES

GRADE IDENTIFICATION

GRADE B THREE MARKS

GRADE C SIX MARKS

MARKS NEED NOT BE LOCATED AT CORNERS

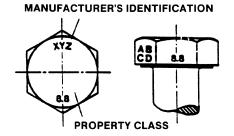
GRADE A NO MARK GRADE B LETTER B GRADE C LETTER C

GRADE IDENTIFICATION

MINIMUM HARDWARE TIGHTENING TORQUES

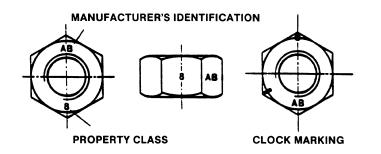
IN FOOT POUNDS (NEWTON-METRES) FOR NORMAL ASSEMBLY APPLICATIONS

METRIC HARDWARE AND LOCKNUTS


NOMINAL	CLASS 5.8		CLASS 8.8		CLASS 10.9		LOCKNUT
SIZE	UNPLATED	PLATED W/ZnCr	UNPLATED	PLATED W/ZnCr	UNPLATED	PLATED W/ZnCr	CL.8 w/CL8.8 BOLT
M4	15* (1.7)	19*(2.2)	23* (2.6)	30* (3.4)	33* (3.7)	42*(4.8)	16*(1.8)
M6	51* (5.8)	67*(7.6)	79* (8.9)	102* (12)	115* (13)	150* (17)	56*(6.3)
M8	124* (14)	159* (18)	195* (22)	248* (28)	274* (31)	354* (40)	133* (15)
M10	21 (28)	27 (36)	32 (43)	41 (56)	45 (61)	58 (79)	22 (30)
M12	36 (49)	46 (63)	55 (75)	72 (97)	79 (107)	102 (138)	39 (53)
M16	89 (121)	117 (158)	137 (186)	177 (240)	196 (266)	254 (344)	97 (131)
M20	175 (237)	226 (307)	277 (375)	358 (485)	383 (519)	495 (671)	195 (265)
M24	303 (411)	392 (531)	478 (648)	619 (839)	662 (897)	855(1160)	338 (458)

NOTE: Torque values shown with * are in inch pounds.

IDENTIFICATION


HEX CAP SCREWS AND CARRIAGE BOLTS

CLASSES 5.6 AND UP.

HEX NUTS AND LOCKNUTS

CLASSES 05 AND UP.

STANDARD TORQUE DATA FOR HYDRAULIC TUBES AND FITTINGS

				TORQUE			
0175	TUBING O.D. Inches mm		THREAD	FO POU		NEWTON METERS	
SIZE			SIZE	Min.	Max.	Min.	Max.
4	1/4	6.4	7/16-20	9	12	12	16
5	5/16	7.9	1/2-20	12	15	16	20
6	3/8	9.5	9/16-18	21	24	29	33
8	1/2	12.7	3/4-16	35	40	47	54
10	5/8	15.9	7/8-14	53	58	72	79
12	3/4	19.1	1-1/16-12	77	82	104	111
14	7/8	22.2	1-3/16-12	90	100	122	136
16	1	25.4	1-5/16-12	110	120	149	163
20	1-1/2	31.8	1-5/8-12	140	150	190	204
24	1-1/2	38.1	1-7/8-12	160	175	217	237
32	2	50.8	2-1/2-12	225	240	305	325
	1	l	1	I	I		I

TUBE NUTS FOR 37° FLARED FITTINGS

O-RING BOSS PLUGS, ADJUSTABLE FITTING LOCKNUTS, SWIVEL JIC - 37° SEATS

TORQUE							
FO POU	-	NEWTON METERS					
Min.	Max.	Min.	Max.				
6	10	8	14				
10	15	14	20				
15	20	20	27				
25	30	34	41				
35	40	47	54				
60	70	81	95				
70	80	95	109				
80	90	108	122				
95	115	129	156				
120	140	163	190				
250	300	339	407				

Above torque figures are recommended for plain, cadmium or zinc plated fittings, dry or wet installations.

Swivel nuts either swaged or brazed.

These torques are not recommended for tubes of $\frac{1}{2}$ " (12.7 mm) O.D. and larger with wall thickness of 0.035" (0.889 mm) or less. The torque is specified for 0.035" (0.889 mm) wall tubes on each application individually.

of an inch to decimals and to millimeters Millimeters mm Inches Inches Incles Millimeters 1/64 0.015625 0.3969 0.01 0.00039 0.001 1/32 0.03125 0.7937 0.02 0.00079 0.002 3/64 0.046875 1.1906 0.03 0.001157 0.004 5/64 0.078125 1.9844 0.05 0.00276 0.0077 3/32 0.09375 2.3812 0.06 0.00236 0.0067 7/64 0.1025 3.5719 0.09 0.00354 0.009 5/32 0.16625 3.9687 0.1 0.00394 0.01 11/64 0.171875 4.3656 0.2 0.00787 0.02 3/16 0.1875 4.7625 0.3 0.01181 0.03 13/64 0.203125 5.1594 0.4 0.1576 0.04 7/32 0.21875 5.5562 0.5 0.01969 0.05 15/64 0.224375 7.9375 2 <				N CHART	CONVERSIO		•
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ion Table les to neters	Inch Millin	eters to hes	Convers Millime Inc	isions imals ers	of an inch to dec and to millimet	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mm	· · · · · · · · · · · · · · · · · · ·					T
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0254						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0508						
5/64 0.078125 1.9844 0.05 0.00197 0.005 $3/32$ 0.09375 2.3812 0.06 0.00236 0.007 $1/8$ 0.125 3.1750 0.08 0.00315 0.007 $1/8$ 0.125 3.5719 0.09 0.00354 0.009 $9/64$ 0.146255 3.9687 0.1 0.0094 0.01 $11/64$ 0.171875 4.3656 0.2 0.00787 0.02 $3/16$ 0.1875 4.7625 0.3 0.011811 0.03 $13/64$ 0.203125 5.1594 0.4 0.1575 0.04 $7/32$ 0.21875 5.5562 0.5 0.01969 0.05 $13/64$ 0.203125 5.1594 0.4 0.1575 0.04 $1/4$ 0.255 6.3500 0.7 0.02262 0.06 $1/4$ 0.255 6.3500 0.7 0.02766 0.07 $17/64$ 0.226625 6.7469 0.8 0.03150 0.08 $9/32$ 0.28125 7.9375 2 0.07874 0.2 $21/64$ 0.328125 8.3344 3 0.11811 0.3 $11/32$ 0.34375 9.7375 2 0.07874 0.2 $21/64$ 0.399375 9.1281 5 0.19685 0.5 $3/8$ 0.375 9.5250 6 0.23622 0.6 $25/64$ 0.399375 9.1281 5 0.19685 0.5 $31/8$ 0.375 <td>0.0762</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.0762						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1016						
7/64 0.109375 2.7781 0.07 0.00276 0.007 $1/8$ 0.125 3.1750 0.08 0.00315 0.003 $9/64$ 0.140625 3.5719 0.09 0.00354 0.009 $5/32$ 0.15625 3.9687 0.1 0.00394 0.01 $11/64$ 0.171875 4.3656 0.2 0.00787 0.02 $3/16$ 0.1875 4.7625 0.3 0.01181 0.03 $13/64$ 0.203125 5.1594 0.4 0.1575 0.04 $7/32$ 0.21875 5.5562 0.5 0.01969 0.05 $15/64$ 0.234375 5.9531 0.6 0.02262 0.06 $1/4$ 0.255 6.3500 0.7 0.02756 0.07 $7/64$ 0.265625 6.7469 0.8 0.03150 0.08 $9/32$ 0.28125 7.1437 0.9 0.03543 0.09 $9/32$ 0.28125 7.9375 2 0.07874 0.2 $21/64$ 0.328125 8.3344 3 0.11811 0.3 $11/32$ 0.34375 9.7250 6 0.23622 0.6 $25/64$ 0.390625 9.9219 7 0.27559 0.7 $3/32$ 0.40625 10.3187 8 0.31496 0.8 $27/64$ 0.421875 10.7156 9 0.35433 0.9 $7/16$ 0.4375 11.1052 10 0.39370 1 $29/64$ 0.57	0.1270						
1/8 0.125 3.1750 0.08 0.00315 0.008 $9/64$ 0.140625 3.5719 0.09 0.00354 0.009 $5/32$ 0.15625 3.9687 0.1 0.00394 0.01 $11/64$ 0.171875 4.3656 0.2 0.00787 0.02 $3/16$ 0.1875 4.7625 0.3 0.01181 0.03 $13/64$ 0.203125 5.1594 0.4 0.1575 0.04 $7/32$ 0.21875 5.5562 0.5 0.01969 0.05 $15/64$ 0.234375 5.9531 0.6 0.02362 0.06 $1/4$ 0.25 6.3500 0.7 0.02756 0.07 $17/64$ 0.266625 6.7469 0.8 0.03150 0.08 $9/32$ 0.28125 7.1437 0.9 0.03543 0.09 $9/64$ 0.296875 7.5406 1 0.03937 0.1 $5/16$ 0.3125 7.9375 2 0.07874 0.2 $21/64$ 0.328125 8.3344 3 0.11811 0.3 $23/64$ 0.390625 9.9219 7 0.27559 0.7 $23/8$ 0.375 9.5250 6 0.23622 0.6 $25/64$ 0.390625 10.3187 8 0.31496 0.8 $27/64$ 0.421875 11.7125 10 0.39370 1 $1/32$ 0.46875 11.9062 12 0.47244 3 $31/64$ 0.48375 <td>0.1524</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.1524						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1778 0.2032						
5/32 0.15625 3.9687 0.1 0.00394 0.01 $11/64$ 0.171875 4.3656 0.2 0.00787 0.02 $3/16$ 0.1875 4.7625 0.3 0.01181 0.03 $13/64$ 0.203125 5.1594 0.4 0.1575 0.04 $7/32$ 0.21875 5.5562 0.5 0.01969 0.05 $15/64$ 0.234375 5.9531 0.6 0.02362 0.66 $1/4$ 0.255 6.3500 0.7 0.02756 0.07 $17/64$ 0.266625 6.7469 0.8 0.03150 0.08 $9/32$ 0.28125 7.1437 0.9 0.03543 0.09 $9/64$ 0.296875 7.5406 1 0.03937 0.1 $5/16$ 0.3125 7.9375 2 0.07874 0.2 $21/64$ 0.328125 8.3344 3 0.11811 0.3 $11/32$ 0.34375 8.7312 4 0.15748 0.4 $23/64$ 0.359375 9.1281 5 0.19685 0.5 $3/8$ 0.3755 9.9219 7 0.27559 0.7 $13/32$ 0.46825 10.3187 8 0.31496 0.8 $27/64$ 0.421875 10.7156 9 0.35433 0.9 $7/16$ 0.453125 11.9062 12 0.47244 3 $1/4$ 0.518625 13.8906 17 0.62929 7 $3/64$ 0.546875 <td< td=""><td>0.2032</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	0.2032						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.2280						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.254						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.762						
7/32 0.21875 5.5562 0.5 0.01969 0.05 $15/64$ 0.234375 5.9531 0.6 0.02362 0.06 $1/4$ 0.25 6.3500 0.7 0.02756 0.07 $17/64$ 0.265625 6.7469 0.8 0.03150 0.08 $9/32$ 0.28125 7.1437 0.9 0.03543 0.09 $19/64$ 0.296875 7.5406 1 0.03937 0.1 $5/16$ 0.3125 7.9375 2 0.07874 0.2 $21/64$ 0.328125 8.3344 3 0.11811 0.3 $11/32$ 0.34375 8.7312 4 0.15748 0.4 $23/64$ 0.359375 9.1281 5 0.19685 0.5 $3/8$ 0.375 9.5250 6 0.23622 0.6 $25/64$ 0.390625 9.9219 7 0.27559 0.7 $13/32$ 0.40625 10.3187 8 0.31496 0.8 $27/64$ 0.421875 11.7156 9 0.35433 0.9 $7/16$ 0.4375 11.1125 10 0.39370 1 $29/64$ 0.453125 11.5094 11 0.43307 2 $15/32$ 0.46875 13.3069 15 0.59055 6 $17/32$ 0.53125 13.4937 16 0.62929 7 $35/64$ 0.546875 13.8906 17 0.66929 8 $9/16$ 0.5625 14.2875 <	1.016						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.270						
1/4 0.25 6.3500 0.7 0.02756 0.07 $17/64$ 0.265625 6.7469 0.8 0.03150 0.08 $9/32$ 0.28125 7.1437 0.9 0.03543 0.09 $19/64$ 0.296875 7.5406 1 0.03937 0.1 $5/16$ 0.3125 7.9375 2 0.07874 0.2 $21/64$ 0.328125 8.3344 3 0.11811 0.3 $11/32$ 0.34375 8.7312 4 0.15748 0.4 $23/64$ 0.359375 9.1281 5 0.19685 0.5 $3/8$ 0.3755 9.5250 6 0.23622 0.6 $25/64$ 0.390625 9.9219 7 0.27559 0.7 $13/32$ 0.40625 10.3187 8 0.31496 0.8 $27/64$ 0.421875 10.7156 9 0.35433 0.9 $7/16$ 0.4375 11.1125 10 0.39370 1 $29/64$ 0.453125 11.5094 11 0.43307 2 $15/32$ 0.46875 12.3031 13 0.51181 4 $1/2$ 0.5 12.7000 14 0.55118 5 $33/64$ 0.546875 13.8906 17 0.66929 8 $9/16$ 0.5625 14.2875 18 0.70866 9 $37/64$ 0.578125 15.6812 20 0.78740 11 $39/64$ 0.609375 15.4781	1.524						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.778						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.032						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.286						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.54						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.08					0.3125	5/16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.62			3	8.3344		21/64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.16	0.4	0.15748		8.7312	0.34375	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.70	0.5	0.19685	5	9.1281	0.359375	23/64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.24	0.6	0.23622				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.78		0.27559			0.390625	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.32						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.86						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.4				1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.8	2					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.2						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.6						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	127.0	5					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	152.4						
9/160.562514.2875180.70866937/640.57812514.6844190.748031019/320.5937515.0812200.787401139/640.60937515.4781210.82677125/80.62515.8750220.866141341/640.64062516.2719230.905511421/320.6562516.6687240.944881543/640.67187517.0656250.9842516	177.8 203.2						
37/640.57812514.6844190.748031019/320.5937515.0812200.787401139/640.60937515.4781210.82677125/80.62515.8750220.866141341/640.64062516.2719230.905511421/320.6562516.6687240.944881543/640.67187517.0656250.9842516	203.2						
19/320.5937515.0812200.787401139/640.60937515.4781210.82677125/80.62515.8750220.866141341/640.64062516.2719230.905511421/320.6562516.6687240.944881543/640.67187517.0656250.9842516	220.0 254.0	-					
39/640.60937515.4781210.82677125/80.62515.8750220.866141341/640.64062516.2719230.905511421/320.6562516.6687240.944881543/640.67187517.0656250.9842516	279.4						
5/80.62515.8750220.866141341/640.64062516.2719230.905511421/320.6562516.6687240.944881543/640.67187517.0656250.9842516	304.8						
41/640.64062516.2719230.905511421/320.6562516.6687240.944881543/640.67187517.0656250.9842516	330.2						
21/320.6562516.6687240.944881543/640.67187517.0656250.9842516	365.6						
43/64 0.671875 17.0656 25 0.98425 16	381.0						
	406.6						
11/16 0.6875 17.4625 26 1.02362 17	431.8						
45/64 0.703125 17.8594 27 1.06299 18	457.2						
23/32 0.71875 18.2562 28 1.10236 19	482.6	19	1.10236	28	18.2562	0.71875	23/32
47/64 0.734375 18.6531 29 1.14173 20	508.0	20	1.14173	29	18.6531	0.734375	47/64
3/4 0.75 19.0500 30 1.18110 21	533.4	21		30			
49/64 0.765625 19.4469 31 1.22047 22	558.8						
25/32 0.78125 19.8437 32 1.25984 23	594.2						
51/64 0.796875 20.2406 33 1.29921 24	609.6						
13/16 0.8125 20.6375 34 1.33858 25	635.0						
53/64 0.828125 21.0344 35 1.37795 26	660.4						
27/32 0.84375 21.4312 36 1.41732 27	685.8						
55/64 0.859375 21.8281 37 1.4567 28 7/9 0.975	711.2						
7/8 0.875 22.2250 38 1.4961 29	736.6	29	1.4961	38	22.2250	0.875	//Ծ

	Fractional sub-div of an inch to dec and to millimel	Millim	sion Table neters to ches	Inc	sion Table hes to imeters	
Inches	Decimals	Millimeters		Inches	Inches	mm
Inches 57/64 29/32 59/64 15/16 61/64 31/32 63/64			39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	1.5354 1.5748 1.6142 1.6535 1.6929 1.7323 1.7717 1.8110 1.8504 1.8898 1.9291 1.9685 2.0079 2.0472 2.0866	30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	762.0 787.4 812.8 838.2 863.6 889.0 914.4 939.8 965.2 990.6 1016.0 1041.4 1066.8 1092.2 1117.6
			54 55 56 57 58 59 60 61 62 63 64 65 66 67	2.1260 2.1654 2.2047 2.2441 2.2835 2.3228 2.3622 2.4016 2.4409 2.4803 2.5197 2.5590 2.5984 2.6378	45 46 47 48 49 50 51 52 53 54 55 56 57 58	1143.0 1168.4 1193.8 1219.2 1244.6 1270.0 1295.4 1320.8 1346.2 1371.6 1397.0 1422.4 1447.8 1447.8
			67 68 69 70 71 72 73 74 75 76 77 76 77 78	2.6378 2.6772 2.7165 2.7559 2.7953 2.8346 2.8740 2.9134 2.9528 2.9921 3.0315 3.0709	58 59 60 61 62 63 64 65 66 67 68 69	1473.2 1498.6 1524.0 1549.4 1574.8 1600.2 1625.6 1651.0 1676.4 1701.8 1727.2 1752.6
			79 80 81 82 83 84 85 86 87 88 89 90	3.1102 3.1496 3.1890 3.2283 3.2677 2.3071 3.3455 3.3858 3.4252 3.4646 3.5039 3.5433	70 71 72 73 74 75 76 77 78 79 80 81	1778.0 1803.4 1828.8 1854.2 1879.6 1905.0 1930.4 1955.8 1981.2 2006.6 2032.0 2057.4

Fractional sub-divisions of an inch to decimals and to millimeters			Conversion Table Millimeters to Inches		Conversion Table Inches to Millimeters	
Inches	Decimals	Millimeters	mm	Inches	Inches	mm
			91	3.5868	82	2082.8
			92	3.6220	83	2108.2
			93	3.6614	84	2133.6
			94	3.7008	85	2159.0
			95	3.7402	86	2184.4
			96	3.7795	87	2209.8
			97	3.8189	88	2235.2
			98	3.8483	89	2260.6
			99	3.8976	90	2286.0
			100	3.937008	91	2311.4
					92	2336.8
					94	2387.6
					95	2413.0
					96	2438.4
					97	2463.8
					98	2489.2
					99	2514.6
					100	2540.0

1 mm = 0.03937008 inches

1 inch = 25.4 millimeters

To CONVERT MILLIMETERS to INCHES, multiply the number of millimeters by 0.03937.

Example: 75.384 mm x 0.03937 = 2.9678"

To CONVERN INCHES to MILLIMETERS, multiply the number of inches by 25.4.

Example: 2.9678" x 25.4 = 75.384 mm

SECTION 1 ELECTRICAL SYSTEM CONTENTS

TR96 and TR97

GENERAL ELECTRICAL 1/	A-1
AIR CONDITIONING ELECTRICAL SYSTEM 11	B-1
LIGHT ELECTRICAL SYSTEMS 10	C-1
VARIABLE SPEED CONTROL ELECTRICAL SYSTEM 1	D-1
ENGINE ELECTRICAL SYSTEM1	E-1
ELECTRONIC STONE TRAP ELECTRICAL SYSTEM 1	F-1
ELECTROHYDRAULIC ELECTRICAL SYSTEM	G-1
WIRING DIAGRAMS 1	H-1
INDEX	11-1

SECTION 1A ELECTRICAL SYSTEM GENERAL ELECTRICAL

INTRODUCTION

The electrical system has been divided into the following sections:

- 1A GENERAL ELECTRICAL
- 1B AIR-CONDITIONING ELECTRICAL SYSTEM
- 1C LIGHT ELECTRICAL SYSTEMS
- 1D VARIABLE SPEED CONTROL ELECTRICAL SYSTEMS
- 1E ENGINE ELECTRICAL SYSTEMS
- 1F ELECTRONIC STONE TRAP ELECTRICAL SYSTEM
- 1G ELECTRO-HYDRAULIC ELECTRICAL SYSTEMS
- 1H WIRING DIAGRAMS

Each section has a description of the electrical circuit, a schematic of the circuit, and diagnostic test procedures based on the symptom(s) that a system demonstrates.

Read all the introductory information before starting any test procedure. Next, look through the test procedures and locate the correct symptom. Use that test procedure to locate and correct the problem. Follow the steps as instructed. Do not skip steps unless instructed to do so in the test procedures.

Prepare the machine for the test by following the pretest instructions. Perform the test and observe the results. Perform the indicated corrective action. Continue through the test procedure until the problem is corrected, then return the system to an operational condition (replace shields, etc.).

DEFINITION OF TERMS

ALTERNATING CURRENT (A.C.) -- A flow of electrons which reverses its direction of flow at regular intervals in a conductor.

AMMETER -- Measures the flow of electrical current in amperes. Ammeters are connected in series with the circuit to be tested.

AMPERE -- A unit of measure for the flow of current in a circuit. The ampere is used to measure electricity such as "gallons per minute" is used to measure liquid flow.

CIRCUIT -- A continuous, unbroken path along a conductor through which electrical current can flow from a source, through various units, and back to the source.

CIRCUIT BREAKER -- A device to protect an electrical circuit from overloads.

COLD RATING -- The cranking load capacity of a battery at low temperatures.

CONTINUITY -- Unbroken path along a conductor through which electrical current can flow.

CURRENT -- Movement of electricity along a conductor. Current is measured in amperes.

DIODE -- An electrical device that will allow current to pass through itself in one direction only.

DIRECT CURRENT (D.C.) -- A flow of electrons moving in the same direction along a conductor from a point of high potential to one of lower potential.

OHM -- The standard unit for measuring resistance to flow of an electrical current.

OHMMETER -- An instrument for measuring the resistance in ohms of an electrical circuit.

OPEN CIRCUIT -- An open circuit occurs when a circuit is broken interrupting the flow of current through the circuit.

RELAY -- An electrical switch which opens and closes a circuit automatically when activated.

RESISTANCE -- The opposing force offered by a circuit. Resistance is measured in ohms.

SHORT CIRCUIT -- A part of a circuit comes in contact with part of the same circuit or unintentionally touches a metallic object.

SOLENOID -- A circular coil used for producing a magnetic field.

VOLT -- A unit of electrical pressure which caused current to flow in a circuit.

VOLTAGE -- The force which is generated to cause current to flow in an electrical circuit. Voltage is measured in volts.

VOLTMETER -- An instrument for measuring the force in volts of electrical current. Voltmeters are connected in parallel to the points where voltage is to be measured.

ELECTRICAL SYSTEM COMPONENTS

* IMPORTANT! ROCKER SWITCH AND PADDLE SWITCH OPERATION: PRESSING DOWN CLOSES TOP CIRCUIT PRESSING DOWN CLOSES TOP CIRCUIT CLOSES BOTTOM CIRCUIT CLOSES BOTTOM CIRCUIT

FIGURE 1A-1

MOMENTARY SWITCHES

Figure 1A-1

Momentary switches are used to direct power to circuits. These switches will return to the neutral position when released. Power flow through the switch is shown in the schematic.

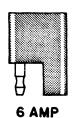
CIRCUIT BREAKERS

Circuit breakers are used to protect wires and electrical parts from overload caused by short circuits or circuit overload.

FUSES

Fuses protect electrical parts from overload. Use the correct size fuse, as specified, for the circuits. Use of higher rated or slow-blow fuses could cause damage to components.

DIODES


Diodes permit electrical current to flow in one direction but not the other. Diodes are used in the electro-hydraulic system so that one wire can be used with more than one circuit to control a relay or solenoid. Diodes also prevent arcing at the contact points of the relays and momentary switches.

Two size diodes are used in the electrical system. One amp diodes are used to operate relays and six amp diodes are used to operate solenoids. A six amp diode may be substituted for a one amp diode, but a one amp should not be used in place of a six amp diode.

One amp diodes are smaller in size than six amp diodes as shown in Figure 1A-2. One amp diodes also have two parallel lines on each side of the diodes while six amp diodes have plain sides.

Diodes can fail in either an open condition, in which no power passes in either direction, or a closed condition in which power flows in both directions. Failures usually occur due to overload or by short circuits. DO NOT SHORT WIRES TO GROUND TO DETERMINE IF POWER IS AVAILABLE (SPARK TEST). THIS WILL CAUSE DIODES TO FAIL.

Н

• • • • • • •

FIGURE 1A-2

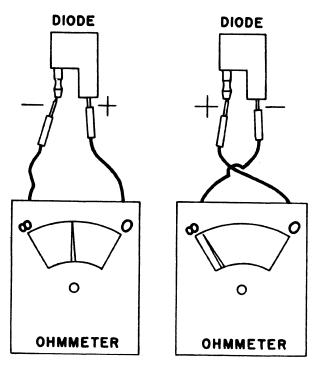


FIGURE 1A-3

DIODE TEST PROCEDURE

Figure 1A-3

To test a diode, use an ohmmeter set to the R X 1 or to the R X 10 scale. Remove the diode and connect the ohmmeter test leads to the ends of the diode. Measure the resistance, then reverse the test leads. In one direction the ohmmeter should show an open circuit (no needle deflection). When the test leads are reversed the ohmmeter should show about half scale deflection. If the two readings are the same, the diode is defective and should be replaced. A known good diode or one from a working circuit can be substituted for a suspected defective diode if an ohmmeter is not available.

DIODE CHART

The chart shows which functions will be affected by a diode that fails open or closed.

The symptoms that the operator will observe are listed first (1). The electrical symptoms that will be observed at the coils of the stack valve(s) are listed second (2).

A circuit may indicate a model and/or serial number range for which it applies. If a circuit does not indicate a model or serial number range, the circuit description applies to all Models TR96 and TR97 combines.

CIRCUIT (applicable model)	DIODE	SYMPTOMS IF DIODE FAILS OPEN	SYMPTOMS IF DIODE FAILS CLOSED
Reel raise/ lower (TR96 below S/N 529779)	D1	(1) Reel will not raise when the reel raise circuit is activated.	(1) Reel will raise when the reel lower button is depressed.
		(2) Power to the master solenoid, no power to reel solenoid when the reel raise circuit is activated.	(2) Power to the master and reel solenoids when the reel lower circuit is activated.
(TR96 above S/N 529778 and TR97)	D1	NOT USED	
Reel raise (TR96 below S/N 529779)	D2	(1) Reel will lower when the reel raise circuit is activated.	(1) Reel will raise when head is raised or head tilt circuits are activated.
		(2) Power to reel solenoid, no power at master solenoid when the reel raise circuit is activated.	(2) Power to reel solenoid when listed systems are activated.
Reel raise (TR96 above S/N 529778 and TR97)	D2	(1) Reel will not raise when the reel raise circuit is activated.	(1) Reel will raise when head is raised or head tilt circuits are activated.
		(2) Power to reel raise solenoid, no power at master solenoid when the reel raise circuit is activated.	(2) Power to reel raise solenoid when listed systems are activated.

CIRCUIT (applicable model)	DIODE	SYMPTOMS IF DIODE FAILS OPEN	SYMPTOMS IF DIODE FAILS CLOSED
Head raise and automatic head height	D3	(1) The head will not raise, and the head raise light does not light, when the manual head raise switch is activated. The head will raise and the head raise light will light when the automatic head height raise switch is activated on the head.	(1) The head will not raise, and the head height power on light goes out when the automatic head height control raise switch is activated on the head. The head raises normally when the manual head raise switch is activated.
		(2) No power to the head raise or master solenoids when the manual head raise switch is activated.	(2) Power at the P/O wire connection at the head height latch off relay base when the relay is removed and the automatic head height control raise switch on the head is activated.
Head raise	D4	(1) Head will not raise, but the head raise indicator light lights when the head raise circuit is activated.	(1) Head will raise when the head raise, reel raise, or head tilt circuits are activated.
		(2) Power to the head raise solenoid, no power to the master solenoid when the head raise circuit is activated.	(2) Power at the head raise solenoid when the listed functions are activated.
Head lower	D5	(1) System works properly until the automatic head height system is activated. Then, the automatic head height control system will not work and the automatic head height control system on light will not light.	(1) System works properly until the automatic head height control is activated. Then, the head will continually lower and the head lower light will stay on. When the automatic head raise switch is activated, the head will raise very slowly. Both the head raise and head lower lights will light.
		(2) There is power to the head lower solenoid but no power to the automatic head height and head tilt switches when the head lower switch is depressed.	(2) There is continual power to the head lower solenoid when the automatic head height system is activated with connector K disconnected.

CIRCUIT (applicable model)	DIODE	SYMPTOMS IF DIODE FAILS OPEN	SYMPTOMS IF DIODE FAILS CLOSED
Head tilt clockwise	D6	(1) Head will not tilt clockwise but the clockwise indicator light will light.	(1) Head tilts clockwise when reel lift and head lift circuits are activated. Head will not tilt when counterclockwise tilt circuit is activated. The clockwise tilt indicator light will light when any of the listed functions are activated.
		(2) Power to clockwise tilt solenoid, but no power to the master solenoid when the clockwise tilt system is activated.	(2) Power to clockwise head tilt solenoid when listed functions are activated.
Head tilt counterclockwise	D7	(1) Head will not tilt counterclockwise but the counterclockwise indicator light will light.	(1) Head will tilt counterclockwise when reel lift or head lift circuits are activated. Head will not tilt when clockwise tilt circuit is activated. The counterclockwise tilt indicator light will light when any of the listed functions are activated.
		(2) Power at counterclockwise tilt solenoid, no power at master solenoid when the counterclockwise tilt system is activated.	(2) Power to counterclockwise head tilt solenoid when listed functions are activated.
	D8	NOT USED	
	D9	NOT USED	
Unloading auger swing out	D10	(1) Unloading auger will not swing out.	(1) Unloading auger will swing out when the reel raise, head raise, head tilt CW or CCW, feeder reverser, or reel fore-aft systems are activated. The auger will not move when the swing in system is activated.
		(2) Power at the swing out solenoid, no power at the master solenoid when the system is activated.	(2) Power to the swing out solenoid when any of the listed functions are activated.

CIRCUIT (applicable model)	DIODE	SYMPTOMS IF DIODE FAILS OPEN	SYMPTOMS IF DIODE FAILS CLOSED		
Unloading auger swing in	D11	(1) Unloading auger will not swing in.	(1) Unloading auger will swing in when the reel raise, head raise, head tilt CW or CCW, feeder reverser, or reel fore-aft systems are activated. The auger will not move when the swing out system is activated.		
		(2) Power at the swing in solenoid, no power at the master solenoid when the system is activated.	(2) Power to the swing in solenoid when any of the listed functions are activated.		
Feeder reverser reverse direction	D12	(1) Reverser will not work in the reverse direction.	(1) Reverser will operate in the reverse direction when the reel raise, head raise, head tilt CW or CCW, unloading auger swing in or out, or reel fore-aft systems are activated. The reverser will not move when the forward direction system is activated.		
		(2) Power at the reverse solenoid, no power at the master solenoid when the system is activated.	(2) Power to the reverse solenoid when any of the listed functions are activated.		
Feeder reverser forward direction	D13	(1) Reverser will not work in the forward direction.	(1) Reverser will operate in the forward direction when the reel raise, head raise, head tilt CW or CCW, unloading auger swing in or out, or reel fore-aft systems are activated. The reverser will not move when the reverse direction system is activated.		
		(2) Power at the forward solenoid, no power at the master solenoid when the system is activated.	(2) Power to the forward solenoid when any of the listed functions are activated.		

CIRCUIT (applicable model)	DIODE	SYMPTOMS IF DIODE FAILS OPEN	SYMPTOMS IF DIODE FAILS CLOSED
Automatic head tilt counterclockwise lower switch (located on the head)	D14	(1) Head will not tilt CCW when the automatic CCW lower switch is activated. CCW indicator light does not light.	(1) Head will not tilt CCW when the automatic CCW raise switch is activated. Both CW and CCW indicator lights light.
_		(2) No power at the CCW tilt solenoid or the master solenoid when the automatic CCW lower switch is activated.	(2) Power to CW and CCW head tilt solenoids and the master solenoid when the automatic CCW raise switch is activated.
Automatic head tilt clockwise raise switch (located on the head)	D15	(1) Head will not tilt CW when the automatic CW raise switch is activated. CW indicator light does not light.	(1) Head will not tilt CW when the automatic CW lower switch is activated. Both CW and CCW indicator lights light.
		(2) No power at the CW tilt solenoid or the master solenoid when the automatic CW raise switch is activated.	(2) Power to CW and CCW head tilt solenoids and the master solenoid when the automatic CW lower switch is activated.
Automatic head tilt counterclockwise raise switch (located on the head)	D16	(1) Head will not tilt CCW when the automatic CCW raise switch is activated. CCW indicator light does not light.	(1) Head will not tilt CCW when the automatic CCW lower switch is activated. Both CW and CCW indicator lights light.
		(2) No power at the CCW tilt solenoid or the master solenoid when the automatic CCW raise switch is activated.	(2) Power to CW and CCW head tilt solenoids and the master solenoid when the automatic CCW lower switch is activated.
Automatic head tilt clockwise lower switch (located on the head)	D17	(1) Head will not tilt CW when the automatic CW lower switch is activated. CW indicator light does not light.	(1) Head will not tilt CW when the automatic CW raise switch is activated. Both CW and CCW indicator lights light.
		(2) No power at the CW tilt solenoid or the master solenoid when the automatic CW lower switch is activated.	(2) Power to CW and CCW head tilt solenoids and the master solenoid when the automatic CW lower switch is activated.

CIRCUIT (applicable model)	DIODE	SYMPTOMS IF DIODE FAILS OPEN	SYMPTOMS IF DIODE FAILS CLOSED
Rotor speed decrease (TR96, TR97 below S/N 557404)	D18	 (1) Rotor speed will not decrease when the rotor speed decrease circuit is activated. (2) Power to rotor speed decrease solenoid on the stack valve but no power to the solenoid on the rotor speed isolation valve when the rotor speed decrease switch is activated. 	 (1) Rotor speed will not increase or increases very slowly. (2) Power to the master solenoid, rotor speed increase solenoid, rotor speed decrease solenoid on the stack valve and power to the solenoid on the rotor speed isolation valve when the rotor speed increase switch is activated.
(TR97 above S/N 557403)	D18	NOT USED	
Rotor speed increase (TR96, TR97 below S/N 557404)	D19	 (1) Rotor speed will not increase when the rotor speed increase circuit is activated. (2) Power to master solenoid and rotor speed increase solenoid on the stack valve but no power to the solenoid on the rotor speed isolation valve when the rotor speed increase switch is activated. 	 (1) Rotor speed will not increase or increases very slowly. (2) Power to the master solenoid, rotor speed increase solenoid, rotor speed decrease solenoid on the stack valve and power to the solenoid on the rotor speed isolation valve when the rotor decrease switch is activated.
(TR97 above S/N 557403)	D19	NOT USED	
Reel forward (TR97 above S/N 557403)	D20	 (1) Reel will not move forward when the reel fore circuit is activated. (2) Power at the reel fore solenoid, no 	 (1) Reel will move forward when the reel raise, head raise, head tilt CW/CCW, feeder reverser, or unloading auger swing in/out systems are activated. (2) Power to the reel forward pedersid when env of the listed
		power at the master solenoid when then reel fore circuit is activated.	solenoid when any of the listed functions are activated.
Reel aft (TR97 above S/N 557403)	D21	(1) Reel will not move aft when the reel aft circuit is activated.	(1) Reel will move aft when the reel raise, head raise, head tilt CW/CCW, feeder reverser, or unloading auger swing in/out systems are activated.
		(2) Power at the reel aft solenoid, no power at the master solenoid when then reel fore circuit is activated.	(2) Power to the reel aft solenoid when any of the listed functions are activated.

SOLENOID COILS

Introduction

Three different styles of coils are used to activate the various solenoids used on the combine.

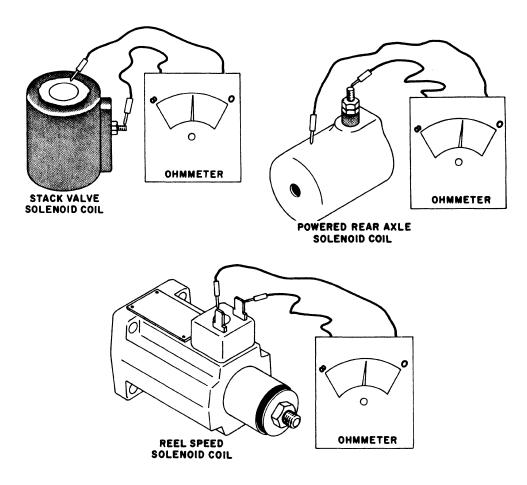
One style coil is used on the electrohydraulic stack valve solenoids. This style coil is an intermittent duty coil and is energized only when a stack valve function is activated. This coil has an internal spark suppression diode to prolong the life of the momentary switches. These coils are identified by a dot of red and yellow paint.

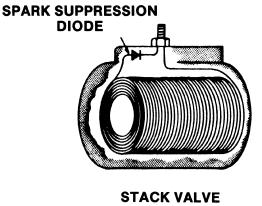
All the coils used on the stack valve are the same and can be interchanged.

A second style coil is used on the reel speed control valve. This coil is a continual duty coil and is energized when the reel speed is activated. A third style coil is used on the powered rear axle control valve. This is a continual duty coil and is energized when the powered rear axle is engaged.

Operation

Power enters the coil through the stud and passes through the coil windings and grounds through the metal ring at the end of the coil. When the coil is energized, an electromagnetic field is created around the solenoid. The electro-magnetic field causes the armature inside the solenoid to move. The armature moves a poppet which controls oil flow through the electro-hydraulic valve.


COIL TEST PROCEDURE


To test a coil, remove the wire(s) from the coil and attach an ohmmeter as shown in Figure 1A-4. The coil should have the following ohms resistance:

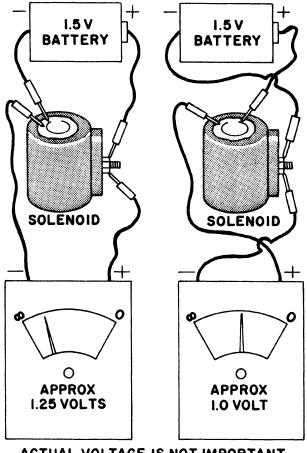
Coil Location	Spark Suppression Diode Test Required	Resistance	Identification	
*Stack Valve Coils	yes	3 to 4 ohms	red/yellow paint	
Powered Rear Axle Coil	no	7 to 8.5 ohms	none	
Reel Speed	no	8 to 10 ohms	none	
Coil				

*NOTE: The spark suppression diode test must be performed in addition to the standard coil test.

NOTE: The stack valve and powered rear axle coils must be tightly secured to the solenoid body because the coil grounds through the solenoid. All rust and dirt should be removed between the coil and solenoid.

SOLENOID

FIGURE 1A-5


SOLENOID OPERATION

An easy way to check if a solenoid is being energized is to place an iron object at the solenoid cover and activate the solenoid by pressing the appropriate switch. If the solenoid receives power, the solenoid will become magnetic and attract the iron object.

If the proper solenoid(s) are being energized when a circuit is activated, the problem is in the solenoid or hydraulic valve.

COIL SPARK SUPPRESSION DIODE TEST

The coils used on the stack valve have a spark suppression diode, Figure 1A-5, built into the coil. The diode prolongs the life of the electro-hydraulic activation switches and assures proper operation of the automatic head height system.

ACTUAL VOLTAGE IS NOT IMPORTANT BUT THERE MUST BE A DIFFERENCE IN VOLTAGE.

CHECKING ARC SUPPRESSION DIODE

FIGURE 1A-6

To test the arc suppression diode, attach a $1\frac{1}{2}$ volt battery and a voltmeter to the coil as shown in Figure 1A-6. The voltmeter should read approximately 1.25 volts when the voltmeter positive lead is attached to the stud.

Reverse the battery and voltmeter leads as shown. The voltmeter should read approximately 1 volt when the negative terminal of the voltmeter is attached to the coil stud.

The actual voltage readings are not important as long as they are different. The difference indicates that the diode is conducting current in only one direction. If the voltages are the same, the suppression diode is defective and the coil must be replaced.

NOTE: Do not use more than a $1\frac{1}{2}$ volt battery for testing purposes or the diode may be damaged.

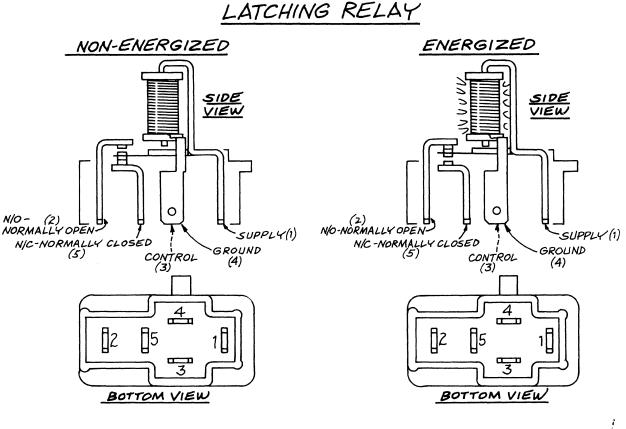


FIGURE 1A-7

RELAYS

Figure 1A-7

Relays are used to control the flow of power to various electrical circuits. A relay can control two different circuits by directing power to one circuit when the relay is not energized. When the relay is energized, power to the first circuit will be discontinued and power will be directed to a second circuit.

The relay controls power flow by activating or not activating the five external terminals on the relay base. Terminal #1 is the common input for electrical current to either terminal #2 or terminal #5. Terminals #3 and #4 are connected to a coil in the relay. The coil determines whether current flows from terminal #1 to #2 or from #1 to #5. When there is no current flow to the coil, the circuit between terminal #1 and #5 is complete. These are the "normally closed" contacts. When current is available at terminal #3, power goes through the coil to ground at the #4 terminal, and the coil is energized. The energized coil pulls the latch up opening the #1 and #5 circuit while the circuit between terminals #1 and #2 is completed. The #1 to #2 circuit is the "normally open" circuit. Current will only flow between terminals #1 and #2 or terminals #1 and #5, but never through both at the same time.

To remove a relay, pull the locking tab on the relay base away from the relay and remove the relay.

Before installing the relay in the relay base, check the terminals on the relay to be sure they are not bent. A bent terminal may not make contact with the relay base and the circuit will not work.

RELAY TEST PROCEDURE

To check a relay, use a ohmmeter and:

- 1. Check for continuity between terminals #1 and #5.
- 2. Supply 12 volts to the #3 terminal and ground the #4 terminal. The coil should energize.
- 3. Check for continuity between the #1 and #2 terminals with the coil energized. If the relay does not meet the test criteria, it should be replaced.

The electrical system uses eight identical relays.

A relay from a working circuit can be substituted for a suspected, defective relay if an ohmmeter is not available.

RELAY CHART

The chart shows what functions are controlled by each relay, what activates the relay (where control power comes from), and how the relay is grounded.

SECTION 1 - ELECTRICAL SYSTEM (General Electrical)

RELAY	CIRCUITS CONTROLLED	ENERGIZED BY	POWER SUPPLY TERMINAL (#1)	CONTROL TERMINAL (#3)	GROUND TERMINAL (#4)	WORK TERMINAL (#2, Normally Open)	WORK TERMINAL (#5, Normally Closed)
Control Relay	Electronic stone trap trap circuit	Thresher clutch engaged with the key switch on	25 Amp control relay circuit breaker	Thresher clutch microswitch	Common ground to gear shift cable clamp	Electronic stone trap	
	Monitor box shaft speed circuits					Feeder speed switch	
	Variable speed motor circuits					Fan speed switch	
	Hydraulic reel speed circuit					Rotor speed switch	
	Threshing hour meter (optional)					Shaft speed portion of the monitor box	
						Hydraulic reel speed circuit	
						Threshing hour meter	
Head height latch off relay	Disengages the automatic head height control circuit when the manual raise circuit is activated to raise the head	Manual head switch activated to raise the head	10 AMP hydraulic control circuit breaker	Head lift switch activated to raise the head	Common ground to gear shift cable clamp		Head height latch on relay
Head height iatch on relay	Engages the automatic head height control circuit when the head lower circuit is activated with the automatic head height toggle switch turned on	Manual head switch activated to the head lower position with the automatic head height toggle switch in the on position	Head height latch off relay work terminal (#2, normally closed)	Automatic head height toggle switch to the on position	Common ground to gear shift cable clamp	Power through PU/Y wire to control terminal (#3) of the relay through the head height toggle switch	
				Depress the head lower switch		Power to the automatic head height control and lateral float system	
						Power to the automatic head height control microswitch box. Power to the automatic head tilt microswitch boxes	

RELAY NAME	CIRCUITS CONTROLLED	ENERGIZED BY	POWER SUPPLY TERMINAL (#1)	CONTROL TERMINAL (#3)	GROUND TERMINAL (#4)	WORK TERMINAL (#2, normally open)	WORK TERMINAL (#5, normally closed)
A/C relay	Pressurizer fan A/C circuit	Key switch on	25 AMP A/C circuit breaker	Key switch	Common ground to gear shift cable clamp	A/C fan switch	
A/C clutch relay	A/C clutch	A/C switch	25 AMP A/C circuit breaker	A/C switch	Common ground to gear shift cable clamp	A/C clutch	
Work lights relay (TR96 below S/N 529779)	All work lights except right front outer work light	Light switch pulled out to the second position for work lights	20 AMP work light circuit breaker	Light switch to the work light position	Common ground to gear shift cable clamp	All work lights except right front outer work light	
Work lights relay (TR96 above S/N 529778)	All work lights except front outer work lights	Light switch pulled out to the second position for work lights	20 AMP work light circuit breaker	Light switch to the work light position	Common ground to gear shift cable clamp	All work lights except front outer work lights	
Work lights relay (TR97)	All work lights except front outer work lights	Light switch pulled out to the second position for work lights	25 AMP work light circuit breaker	Light switch to the work light position	Common ground to gear shift cable clamp	All work lights except front outer work lights	
Master solenoid relay (TR96 below S/N 529779)	Reel lower, feeder reverser, unloading auger swing, master solenoid when reel raise, rotor speed increase, head raise, or head tilt circuits are activated	Raising the reel, increasing rotor speed, raising the head, or tilting the head CW or CCW	10 AMP hydraulic control circuit breaker	Reel lift switch (up) Rotor speed switch (increase) Head lift switch (up) Head tilt switch (CW or CCW)	Common ground to gear shift cable clamp	Master solenoid	Reel lift switch (lower) Feeder reverser switch Unloading auger swing switches
Master solenoid relay (TR96 above S/N 529778; TR97 below S/N 557404)	Feeder reverser, unloading auger swing, master solenoid when reel raise, rotor speed increase, head raise, or head tilt circuits are activated	Raising the reel, increasing rotor speed, raising the head, or tilting the head CW or CCW	10 AMP hydraulic control circuit breaker	Reel lift switch (up) Rotor speed switch (increase) Head lift switch (up) Head tilt switch (CW or CCW)	Common ground to gear shift cable clamp	Master solenoid	Feeder reverser switch Unloading auger swing switches

SECTION 1 - ELECTRICAL SYSTEM (General Electrical)

RELAY NAME	CIRCUITS CONTROLLED	ENERGIZED BY	POWER SUPPLY TERMINAL (#1)	CONTROL TERMINAL (#3)	GROUND TERMINAL (#4)	WORK TERMINAL (#2, normally open)	WORK TERMINAL (#5, normally closed)
Master solenoid relay (TR97 above S/N 557403)	Feeder reverser, unloading auger swing, master solenoid when reel raise, rotor speed increase, head raise, or head tilt circuits are activated	Raising the reel, increasing rotor speed, raising the head, or tilting the head CW or CCW	10 AMP hydraulic control circuit breaker	Reel lift switch (up) Rotor speed switch (increase) Head lift switch (up) Head tilt switch (CW or CCW)	Common ground to gear shift cable clamp	Master solenoid	Feeder reverser switch Unloading auger swing switches Reel fore-aft switches
Run relay	Main power to monitor, main power to electrohydraulic circuits	Key switch on, engine running and oil switch closed	15 AMP run relay circuit breaker	Key switch	Engine oil pressure switch	Monitor Master solenoid relay Head lift switch Head tilt switch Reel lift switch Head height latch off relay	

TROUBLESHOOTING ELECTRO HYDRAULIC CIRCUITS

GENERAL INFORMATION

The engine MUST BE RUNNING before power is available to the electric portion of the electro hydraulic stack valves. While doing diagnostic tests to check for electrical current at switches and solenoids, a jumper wire can be attached across the Y/B and B wires at the oil pressure switch on the engine. This will supply current to the electrical switches WITHOUT running the engine.

CAUTION: CYLINDERS WILL RETRACT WITHOUT THE ENGINE RUNNING WHEN THE JUMPER WIRE IS IN PLACE.

CAUTION: THE JUMPER WIRE SHOULD BE USED FOR DIAGNOSTIC WORK ONLY. REMOVE JUMPER WIRE BEFORE OPERATING THE COMBINE OR RETURNING THE COMBINE TO THE CUSTOMER.

CAUTION: ALL HYDRAULIC CYLINDERS SHOULD BE RETRACTED OR THE STOPS ENGAGED BEFORE DOING DIAGNOSTIC WORK.

In the troubleshooting test procedures, the jumper wire may be used in place of running the engine provided the above listed cautions are observed.

SECTION 1B

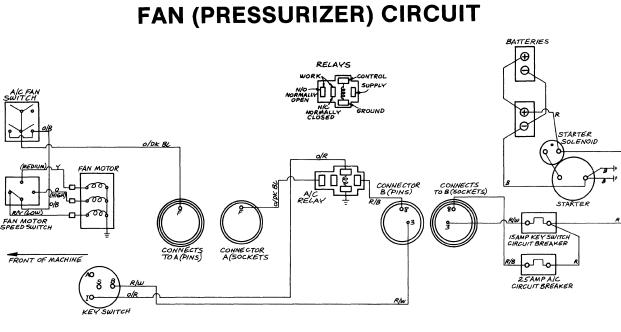
ELECTRICAL SYSTEM

AIR CONDITIONING ELECTRICAL SYSTEM

INTRODUCTION

This section covers the electrical portion of the air conditioning system.

The individual circuits that comprise the air conditioning system are shown in schematic drawings. An explanation of the current flow is provided for each schematic. A schematic may indicate a serial number range for which it applies. If a schematic does not indicate a serial number range, the schematic applies to all Models TR96 and TR97 combines.


GENERAL TROUBLESHOOTING INFORMATION

If a problem occurs, perform the necessary tests to be sure the problem is not the result of a mechanical failure or improper freon charge.

After determining that there is an electrical problem, review the "General Electrical" section of this manual. This section explains the operation of the electrical components found in many circuits. A test procedure is provided for the components.

Before attempting to troubleshoot a circuit, familiarize yourself with the electrical schematics, current flow, and the operation of the electrical components in the circuit.

After you are familiar with the operation of the electrical circuit, operate the combine and observe the symptom(s) of the problem. Match the symptom(s) you observe to the main headings listed in the "Troubleshooting" chart for that circuit in this section. When you find the heading that describes the symptom(s) you observed, follow the step-by-step instructions until the problem is corrected.

FAN (PRESSURIZER) CIRCUIT

FIGURE 1B-1

The fan circuit is shown in Figure 1B-1.

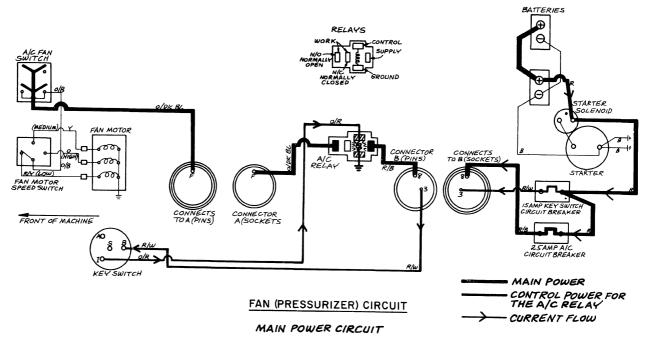


FIGURE 1B-2

OPERATION

Main Power Circuit

Figure 1B-2

Voltage originates at the batteries and passes through the 25 AMP air conditioner circuit breaker to the R/B wire terminal of the air conditioner control relay. When the key switch is turned to the on position, voltage is supplied to the O/R wire terminal of the air conditioner control relay which energizes the coil in the relay. When the coil is energized, a metal strip is drawn upward completing the circuit between the R/B wire connected to the supply spade of the relay and the O/DKBL wire attached to the work terminal of the relay. Power follows the O/DKBL wire to the air conditioner/fan switch.

1B-3

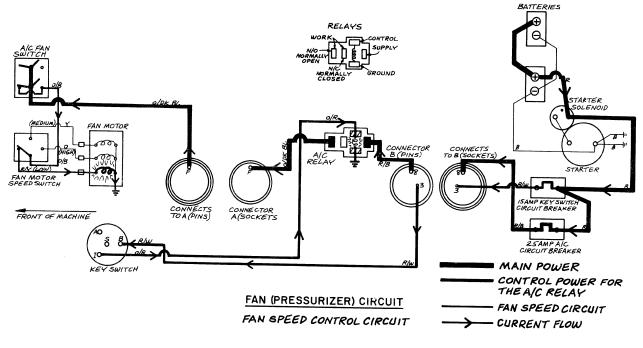


FIGURE 1B-3

FAN SPEED CONTROL CIRCUIT

Figure 1B-3

When the air conditioner/fan switch is positioned in either the fan or air condition position, power is directed to the fan speed control switch. This switch regulates the fan speed by directing power to the fan motor.

TROUBLESHOOTING

Before attempting to troubleshoot a problem, review the information under the "General Troubleshooting" heading in this section along with the material in the "General Electrical" section of this book.

Operate the machine and observe the problem. Match the problem to one of the headings on the following charts. Follow the systematic step-by-step instructions in the chart to locate and correct the problem. Follow all the instructions carefully.

ALL FAN SPEEDS DO NOT WORK

		ALL FAN SPEEDS DU NUT V		
STEP	PRETEST INSTRUCTIONS	TEST	RESULT	PROBABLE CAUSE AND CORRECTION
1.	Key off. Remove the protective shield from the relay bank located to the right	Check for battery voltage at the R/B wire connection of the A/C relay base.	Battery volt- age. No or low volt-	Go to step #4. Go to next step.
	rear of the opera- tor's seat.		age.	Go to next step.
2.	Key off.	Check for battery voltage at the R/B wire connection of the 25 AMP A/C circuit breaker.	Battery volt- age.	Open circuit in the R/B wire or poor connection at con- nector B. Repair.
			No or low volt- age.	Go to next step.
3.	Key off.	Check for battery voltage at the R wire connection of the 25 AMP A/C circuit breaker.	Battery volt- age.	Defective circuit breaker. Replace.
			No or low volt- age.	Open circuit in R wire between cir- cuit breaker and batteries. Repair.
4.	Key on.	Check for battery voltage at the O/R wire connection of the A/C relay base.	Battery volt- age.	Go to step #7.
			No or low volt- age.	Go to next step.
5.	Key on.	Check for battery voltage at the I terminal of the key switch.	Battery volt- age	Open circuit or poor connection in O/R wire between key switch and A/C relay. Repair.
			No or low volt- age.	Go to next step.

STEP	PRETEST INSTRUCTIONS	TEST	RESULT	PROBABLE CAUSE AND CORRECTION
6.	Key on.	Check for battery voltage at the B terminal of the key switch.	Battery volt- age.	Defective key switch. Replace.
			No or low volt- age.	Refer to "Engine will not Crank" sec- tion.
7.	Key off.	Check for continuity between the B wire connection of the	Continuity.	Go to step #8.
		A/C relay base and a good ground.	No continuity or high resist- ance.	Open circuit or poor connection in B wire. Repair.
8.	Key on.	Check for battery voltage at the O/DKBL wire connection of the A/C relay base.	No or low volt- age.	Defective relay. Re- place.
			Battery volt- age.	Go to next step.
9.	Key on.	Check for battery voltage at the O/DKBL wire connection of the air conditioner/fan switch.	No or low volt- age.	Open circuit in O/DKBL wire be- tween the relay and switch or poor con- nection at connect- or A. Repair.
			Battery volt- age.	Go to next step.
10.	Key on. Air condi- tioner/fan switch turned to fan.	Check for battery voltage at the O/B wire connection of the air conditioner/fan switch.	No or low volt- age.	Defective switch. Replace.
			Battery volt- age.	Go to next step.
				ł

• .

STEP	PRETEST INSTRUCTIONS	TEST	RESULT	PROBABLE CAUSE AND CORRECTION
11.	Same as #10.	Check for battery voltage at the O/B wire connection to the fan motor speed switch.	No or low volt- age.	Open circuit or poor connection in O/B wire. Repair.
			Battery volt- age.	Go to next step.
12.	Key on. Air condi- tioner/fan switch turned to fan. Dis- connect the R/Y, O,	Check for battery voltage at the following wires when the fan switch is set to the indicated speed.	No or low volt- age at one or more wires.	Defective switch. Replace.
	and Y wires from the fan motor.	Low - R/Y Medium - Y High - O	Battery volt- age at all wires.	Go to next step.
13.	Key off.	Check for continuity between the B wire from the fan motor and a good ground.	No continuity or high resist- ance.	Open circuit in B wire or poor con- nection of wire to motor or motor frame to cab. Re- pair.
			Continuity.	Defective fan mo- tor. Replace.

ONLY ONE OR TWO FAN SPEEDS WORK

Т

т

1.	Key on. Air condi- tioner/fan switch turned to fan. Dis- connect the R/Y, O,	Check for battery voltage at the following wires when the fan switch is set to the indicated speed.	No or low volt- age at one or more wires.	Defective switch. Replace.
	and Y wires from the fan motor.	Low - R/Y Medium - Y High - O	Battery volt- age at all wires.	Check fan motor. Replace if defective.

AIR CONDITIONING CIRCUIT TR96 Below S/N 526626

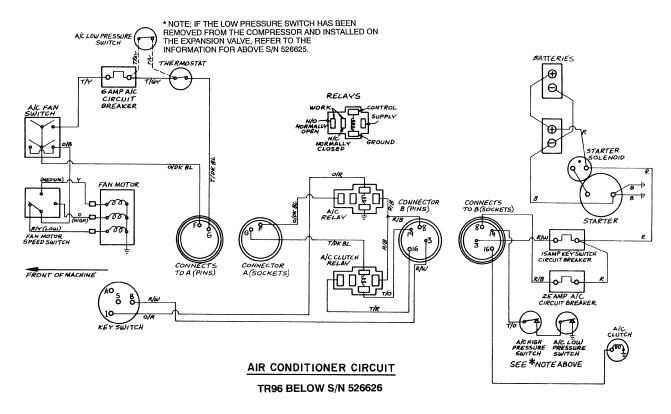
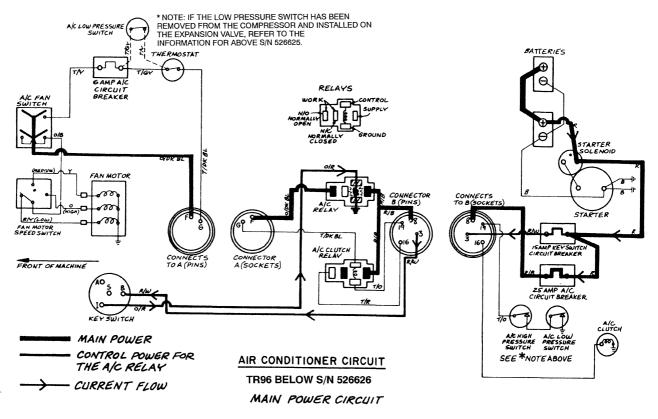
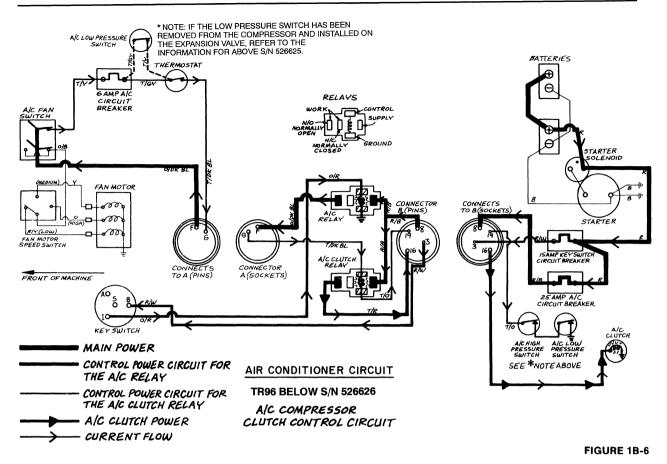


FIGURE 1B-4

The air conditioning circuit is shown in Figure 1B-4.




FIGURE 1B-5

OPERATION

Main Power Circuit

Figure 1B-5

Voltage originates at the batteries and passes through the 25 AMP air conditioner circuit breaker to the R/B wire terminal of the air conditioner control relay and air conditioner clutch relay. When the key switch is turned to the on position, voltage is supplied to the O/R wire terminal of the air conditioner control relay which energizes the coil in the relay. When the coil is energized, a metal strip is drawn upward completing the circuit between the R/B wire connected to the supply spade of the relay and the O/DKBL wire attached to the work terminal of the relay. Power follows the O/DKBL wire to the air conditioner/fan switch.

AIR CONDITIONER COMPRESSOR CLLUTCH CONTROL CIRCUIT

Figure 1B-6

When the air conditioner/fan switch is in the air condition position, power is sent to the fan speed switch through the O/B wire. Power is also sent to the air conditioner 6 AMP circuit breaker through the T/Y wire. Power passes through the circuit breaker and out the T/GY wire to the thermostatic switch.

The thermostatic control switch opens and closes to maintain cab temperature and to keep the evaporator from freezing. When the thermostatic switch is closed, power is supplied to the T/DKBL wire terminal of the air conditioner clutch relay.

With power at the T/DKBL wire terminal of the air conditioner clutch relay and the T/O wire terminal completing the ground circuit, the relay coil is energized. Now, current from the R/B wire terminal passes through the relay to the T/R wire terminal and on to the air conditioner compressor clutch. When the clutch has power it engages and turns the compressor. The T/O wire terminal of the air conditioner clutch relay is the ground circuit for the relay coil. The air conditioner high and low pressure safety switches are located in this ground circuit. If the pressure in the air conditioner system goes below 4 PSI (.27 bar) or above 365 PSI (24.8 bar) the appropriate pressure switch will open and break the ground circuit for the relay coil. The relay will open and power will be lost at the T/R wire which attaches to the compressor clutch. Without power the clutch will disengage and the compressor will stop turning.

TROUBLESHOOTING

Before attempting to troubleshoot a problem, review the information under the "General Troubleshooting" heading in this section along with the material in the "General Electrical" section of this book.

Operate the machine and observe the problem. Match the problem to one of the headings on the following charts. Follow the systematic step-by-step instructions in the chart to locate and correct the problem. Follow all the instructions carefully.

AIR CONDITIONER COMPRESSOR CLUTCH DOES NOT ENGAGE (TR96 Below S/N 526626)

STEP	PRETEST INSTRUCTIONS	TEST	RESULT	PROBABLE CAUSE AND CORRECTION
1.	Key on. Air condi- tioner/fan switch set to A/C position. Thermostat switch	Check for battery voltage at the T/R wire connection at the air conditioner compressor clutch.	No or low volt- age.	Go to step #3.
	set to coldest posi- tion.		Battery volt- age.	Go to next step.
2.	Key off.	Check for 2.5 to 2.7 ohms re- sistance through the compres- sor clutch.	Resistance is within 2.5 to 2.7 ohm range.	Repeat step #1.
			Resistance is not to specifi- cations.	Clutch is not grounded properly or the clutch is defective. Check ground and repair clutch if defective.
3.	Key off. Remove pro- tective shield from the base of the relay bank.	Check for battery voltage at the R/B wire connection of the A/C clutch relay.	Battery volt- age.	Go to step #6.
			No or low volt- age.	Go to next step.
4.	Key off.	Check for battery voltage at the R/B wire connection of the 25 AMP A/C circuit breaker.	Battery volt- age.	Open circuit in R/B wire or poor con- nection at connect- or B. Repair.
			No or low volt- age.	Go to next step.
5.	Key off.	Check for battery voltage at the R wire connection of the 25 AMP A/C circuit breaker.	Battery volt- age.	Defective circuit breaker. Replace.
			No or low volt- age.	Open circuit or poor connections in R wire between the circuit breaker and battery. Repair.

STEP	PRETEST INSTRUCTIONS	TEST	RESULT	PROBABLE CAUSE AND CORRECTION
6.	Key on. Air condi- tioner/fan switch setto A/C. Thermo-	Check for battery voltage at the T/DKBL wire connection of the A/C clutch relay.	Battery volt- age.	Go to step #22.
	stat switch set to coldest position.		No or low volt- age.	Go to next step.
7.	Same as #6.	Check for battery voltage at the T/DKBL wire connection of the thermostat switch.	Battery volt- age.	Open circuit in T/DKBL wire be- tween switch and relay or poor con- nection at connect- or A. Repair.
			No or low volt- age.	Go to next step.
8.	Same as #6.	Check for battery voltage at the T/GY wire connection of the thermostat switch.	Battery volt- age.	Defective thermo- static switch. Re- place.
			No or low volt- age.	Go to next step.
9.	Same as #6.	Check for battery voltage at the T/GY wire connection of the A/C 6 AMP circuit breaker.	Battery volt- age.	Open circuit or poor connections in T/GY wire. Re- pair.
			No or low volt- age.	Go to next step.
10.	Same as #6.	Check for battery voltage at the T/Y wire connection of the 6 AMP A/C circuit breaker.	Battery volt- age.	Defective circuit breaker. Replace.
			No or low volt- age.	Go to next step.

STEP	PRETEST INSTRUCTIONS	TEST	RESULT	PROBABLE CAUSE AND CORRECTION
11.	Same as #6.	Check for battery voltage at the T/Y wire connection of the air conditioner/fan switch.	Battery volt- age.	Open circuit or poorconnection in the T/Y wire. Re- pair.
			No or low volt- age.	Go to next step.
12.	Key on.	Check for battery voltage at the O/DKBL wire connection of the air conditioner/fan switch.	Battery volt- age.	Defective switch. Replace.
			No or low volt- age.	Go to next step.
13.	Key on.	Check for battery voltage at the O/DKBL wire connection of the A/C relay base.	Battery volt- age.	Open circuit in O/DKBL wire or poor connection at connector A. Re- pair.
			No voltage.	Go to next step.
14.	Key off.	Check for battery voltage at the R/B wire connection of the A/C relay base.	Battery volt- age.	Go to step #17.
			No or low volt- age.	Go to next step.
15.	Key off.	Check for battery voltage at the R/B wire connection of the 25 AMP A/C circuit breaker.	Battery volt- age.	Open circuit in the R/B wire or poor connection at con- nector B. Repair.
			No or low volt- age.	Go to next step.

STEP	PRETEST INSTRUCTIONS	TEST	RESULT	PROBABLE CAUSE AND CORRECTION
16.	Key off.	Check for battery voltage at the R wire connection of the 25 AMP A/C circuit breaker.	Battery volt- age.	Defective circuit breaker. Replace.
			No or low volt- age.	Open circuit in R wire between cir- cuit breaker and batteries. Repair.
17.	Key on.	Check for battery voltage at the O/R wire connection of the A/C relay base.	Battery volt- age.	Go to step #20.
			No or low volt- age.	Go to next step.
18.	Key on.	Check for battery voltage at the I terminal of the key switch.	Battery volt- age.	Open circuit or poor connection in O/R wire between key switch and A/C relay. Repair.
			No or low volt- age.	Go to next step.
19.	Key on.	Check for battery voltage at the B terminal of the key switch.	Battery volt- age.	Defective key switch. Replace.
			No or low volt- age.	Refer to "Engine will not Crank" sec- tion.
20.	Key off.	Check for continuity between the B wire connection of the A/C relay base and a good	Continuity.	Go to step #21.
		ground.	No continuity or high resist- ance.	Open circuit or poor connection in B wire. Repair.
				8

This as a preview PDF file from **best-manuals.com**

Download full PDF manual at best-manuals.com